
IEEE Software To be the best source of reliable, useful, peer-reviewed information for leading software practitioners—
Mission Statement the developers and managers who want to keep up with rapid technology change.

“SOFTWARE QUALITY” IS defined
as the field of study and practice that
describes the desirable attributes of
software products. There are two di-
mensions of quality in consideration
here. The first is the fact that the soft-
ware is free of errors, that is, free of
bugs and vulnerabilities, including
missed or misunderstood requirements
and errors in design, functional logic,
data relationships, process timing, va-
lidity checking, and coding errors. The
second, which is more subtle, is the fact
that the system has a handle on its tech-
nical debt and satisfies different qual-
ity and quality attribute characteristics.
The ISO/International Electrotechnical
Commission (IEC) 25010:2011 stan-
dard groups these characteristics under
eight categories: functional suitability,
reliability, operability, performance effi-
ciency, security, compatibility, maintain-
ability, and transferability.1 However,
in reality, quality and quality attributes
vary in multiple other dimensions as
well. In addition, business and contex-
tual goals drive tradeoffs that directly
influence the assessment and guarantee

of quality. For example, safety-critical
domains incorporate finer granular no-
tions of safety and fault tolerance as
well as the ability to certify that these
properties are adequately met.

Assuring software quality along
both of these dimensions revolves
around establishing and ensuring that
the processes and practices of develop-
ing software result in a system that has
the proper quality to meet its business
and user goals. Consequently, assur-
ing software quality advocates for a
systematic approach to evaluating the
quality of and adherence to software
product standards, processes, and
procedures. This activity includes
making sure that appropriate stan-
dards and procedures are established
and followed throughout the entire
software development lifecycle, in-
cluding requirements engineering,
software design, software architecture,
implementation, code reviews, design
conformance, software configura-
tion management, testing, release
management, software integration,
and deployment.

The collection of all these practices
constitutes software quality assurance;
however, more often than not, software

quality assurance is mostly associated
with testing practices. Software qual-
ity assurance cannot be achieved when
confined only to executing tests and
conformance activities. Software en-
gineering practices need to prioritize
the application of techniques in which
enforcing software quality is already
incorporated. Moreover, without em-
bracing an assured-by-design and
implementation approach along with
tools that assist developers to accom-
plish it, achieving software quality will
continue to mostly rely on our ability to
test extensively.

More Formalism
Versus More Agility
Assuring software quality requires
that the implemented sof tware
achieves its desired behavior with-
out any unintended consequences.
Techn ique s ava i lable for such
assured confidence gravitate toward
increased formalism, for example,
formal methods for model-based ap-
proaches to capture traceability from
requirements to design to implementa-
tion. While more formalism assists to
check for nonconformances, it comes
with the cost of the time it takes to

Can We Really Achieve
Software Quality?
Ipek Ozkaya

Digital Object Identifier 10.1109/MS.2021.3060552
Date of current version: 16 April 2021

FROM THE EDITOR
Editor in Chief: Ipek Ozkaya
Carnegie Mellon Software Engineering Institute
ipek.ozkaya@computer.org

0 7 4 0 - 7 4 5 9 / 2 1 © 2 0 2 1 I E E E MAY/JUNE 2021 | IEEE SOFTWARE 3

FROM THE EDITOR

4 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

use these techniques (the time it takes
to specify the software to the level of
detail that is required as inputs for the
effective use of methods with higher
degrees of formalism and rigor). Any
technique that introduces increased
rigor, when not supported by appro-
priate automation, may imply shifting
resources from delivering new func-
tionality. Therefore, there is often de-
bate about how increased formalisms
help in designing-in and assuring soft-
ware quality, but risk compromising
from agility.

The perception that achieving qual-
ity by construction with rigor and
agility is not possible is a weakness of
how we execute the techniques, not
the weakness of the techniques. For ex-
ample, gated process checks and con-
formance steps are inserted, such as
triggering recertification every time a
change happens in safety-critical soft-
ware, even when model-based software
engineering techniques are embraced.
The emphasis should be on isolating the
changes and automating their traceabil-
ity to provide evidence that the changes
do not risk quality, rather than relying
on manual and qualitative conformance
steps. At the other extreme, when soft-
ware delivery is pressed for time and
faces resource challenges, we shortcut
the application of practices that enforce
and check for quality even when auto-
mated, such as analyzing the codebase
for design faults beyond obvious bugs
or completing all of the needed tests.

The Quality Triangle Revisited
The project management triangle,
also referred to as the iron triangle,
suggests that the expected quality of
any work is constrained by the proj-
ect’s budget, schedule, and scope
(features implemented). If we believe
the quality triangle to be correct,
achieving software quality is always
incomplete. We accept that we always

deliver below par as we always have
to trade off one aspect of the cost,
schedule, and scope triad. There are
legitimate challenges that make it
quite difficult to break the tight cou-
pling among these elements and their
influence on software quality.

In 2018, Vector Consulting Ser-
vices conducted a survey among 2,000
decision makers about trends and
challenges in software engineering in
recognition of the 50th anniversary
of software engineering. The study
revealed that organizations continue
to struggle to achieve quality along
with cost and efficiency.2 The reasons
participants cited included the ever-
increasing pressure to reduce costs
while increasing development speed.
This pressure will no doubt continue
to challenge software quality. Auto-
mating test, analysis, integration, and
deployment—in particular, through
embracing DevOps practices and
tools—is one response that software
engineering organizations are giving in
an effort to not give up on quality. Em-
pirical evidence suggests that organiza-
tions incorporating automated security
analysis and DevOps practices (also
referred to as DevSecOps) observe im-
proved security through the improved
discovery of vulnerabilities by using
integrating analysis as well as moni-
toring tools in their development and
deployment environments.3 Despite
their demonstrated effectiveness; how-
ever, not all DevOps and automated
analysis tools are adopted by develop-
ers. The reasons why developers fail to
adopt DevOps tools include challenges
in configuring them and mismatches in
how the tools adapt to the developers’
workflows.4 When developing such
tools, we need to prioritize understand-
ing developers’ workflows. Also, if new
workflows are beneficial, we need to
prioritize how to overcome barriers
of adoption. Improved tool support

CONTACT
US

AUTHORS

For detailed information on submitting
articles, visit the “Write for Us” section at
www.computer.org/software

LETTERS TO THE EDITOR

Send letters to software@computer.org

ON THE WEB

www.computer.org/software

SUBSCRIBE

www.computer.org/subscribe

SUBSCRIPTION
CHANGE OF ADDRESS

address.change@ieee.org
(please specify IEEE Software.)

MEMBERSHIP
CHANGE OF ADDRESS

member.services@ieee.org

MISSING
OR DAMAGED COPIES

contactcenter@ieee.org

REPRINT PERMISSION

IEEE utilizes Rightslink for permissions
requests. For more information,
visit www.ieee.org/publications/rights
/rights-link.html

FROM THE EDITOR

 MAY/JUNE 2021 | IEEE SOFTWARE 5

will improve ability to enforce qual-
ity conformance with less time and ef-
fort, consequently will reduce cost and
schedule barriers to achieving quality.

Can We Really Achieve
Software Quality?
Let us revisit the question I started
with: Can we really achieve software
quality? If assuring software quality
spans every technique and engineering
activity in the software development

and deployment lifecycle, and if we
have to trade off among cost, sched-
ule, and scope to achieve any qual-
ity, the implication by definition
is that quality can only be relative
and not assessed in absolute terms.
The implication of this observation
is that we always need to give up
on quality in our software systems.
There are concrete actions that we
can take to avoid comprimising
from quality, such as the following:

EDITORIAL
STAFF
IEEE SOFTWARE STAFF
Managing Editor: Jessica Welsh, j.welsh@ieee.org
Cover Design: Andrew Baker
Peer Review Administrator: software@computer
.org
Publications Staff Editor: Cathy Martin
Publications Operations Project Specialist:
Christine Anthony
Compliance Manager: Jennifer Carruth
Publications Portfolio Manager: Carrie Clark
Publisher: Robin Baldwin
Senior Advertising Coordinator: Debbie Sims
IEEE Computer Society Executive Director:
Melissa Russell

CS PUBLICATIONS BOARD
M. Brian Blake (VP of Publications), Hui Lei, Antonio
Rubio, Diomidis Spinellis

CS MAGAZINE OPERATIONS
COMMITTEE
Diomidis Spinellis (MOC Chair), Lorena Barba,
Irena Bojanova, Shu-Ching Chen, Gerardo Con Diaz,
Lizy K. John, Marc Langheinrich, Torsten Möller,
Ipek Ozkaya, George Pallis, Sean Peisert,
VS Subrahmanian, Jeffrey Voas

IEEE PUBLICATIONS
OPERATIONS
Senior Director, Publishing Operations: Dawn
M. Melley
Director, Editorial Services: Kevin Lisankie
Director, Production Services: Peter M. Tuohy
Associate Director, Information Conversion and
Editorial Support: Neelam Khinvasara
Senior Managing Editor: Geraldine Krolin-Taylor
Senior Art Director: Janet Dudar

Editorial: All submissions are subject to editing for clarity,
style, and space. Unless otherwise stated, bylined articles
and departments, as well as product and service descriptions,
reflect the author’s or firm’s opinion. Inclusion in IEEE Software
does not necessarily constitute endorsement by IEEE or the
IEEE Computer Society.

To Submit: Access the IEEE Computer Society’s Web-based
system, ScholarOne, at http://mc.manuscript
central.com/sw-cs. Be sure to select the right manuscript type
when submitting. Articles must be original and not exceed
4,700 words including figures and tables, which count for 200
words each.

IEEE prohibits discrimination, harassment and bullying: For
more information, visit www.ieee.org
/web/aboutus/whatis/policies/p9-26.html.

Digital Object Identifier 10.1109/MS.2021.3058030

In this issue of IEEE Software, we feature articles that discuss software
quality from different engineering practices’ perspectives, spanning defect
management, developing safety-critical systems in agile environments, a
comparison of tools that assist in detecting technical debt, and a focus on
two different aspects of testing, including black- and white-box testing and
fuzzing. This collection of articles is well representative of the wide range of
practices that need to work in concert to achieve software quality.

Lopez et al.’s article, “Bumps in the Code: Error Handling During Software
Development,” looks at software errors from the perspective of their potential
contributions to the experience of software developers and their growth.

In “Automatic Recovery of Missing Issue Type Labels,” El Zanaty and col-
leagues describe an approach where they apply machine learning to classify
issues by defect type to improve data analytics.

Cleland-Huang et al. suggest the use of traceability links to visualize and
analyze changes to support safety assurance in agile development environ-
ments in their article, “Visualizing Change in Agile Safety-Critical Systems.”

In “Software Safety Analysis to Support ISO 26262-6 Compliance in
Agile Development,” Sandgren and Antinyan present a software safety-analysis
method to support compliance to ISO 26262.6, the road vehicle function
safety standard, in agile projects.

Avgeriou and colleagues summarize the current state of the practice
when it comes to tools that offer features in an attempt to quantify technical
debt with different metrics in their article, “An Overview and Comparison of
Technical Debt Measurement Tools.”

Arcuri presents experiences with the automated testing of RESTful appli-
cation programming interfaces (APIs), and Böhme et al. present outcomes of
the 2019 Shonan Village Center workshop on fuzzing and symbolic execution
in their articles, “Automated Black- and White-Box Testing of RESTful APIs
With EvoMaster” and “Fuzzing: Challenges and Reflections,” respectively.

THE MANY FACETS OF
SOFTWARE QUALITY

FROM THE EDITOR

6 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

• Continue to advance reliable, au-
tomated tool support, which will
automate mundane analysis tasks
by seamlessly integrating qual-
ity conformance into developer
workflows and bring the cost and
time of assuring quality down.

• Embrace the approach that
implementing and assuring soft-
ware quality is not a phase in the
software development lifecycle,
but it is a nonnegotiable aspect
of all of the software engineering
activities we conduct.

• Make sharing data and experi-
ences in applying various tech-
niques top priorities so that we
can establish an improved empiri-
cal basis for choosing techniques

and practices that get us closer to
software that has assured quality
by construction.

As software engineers, we need
to reject a “good enough”
quality mindset. Achieving

software quality will be possible when
better tools to enforce it will be wide-
spread and software engineers will learn
to make it a priority, no matter what.

References
1. Systems and Software Engineering

- Systems and Software Quality Re-

quirements and Evaluation (SQuaRE)

—System and Software Quality Mod-

els, ISO/IEC 25010:2011.

2. C. Ebert, “50 years of software engi-

neering: Progress and perils,” IEEE

Softw, vol. 35, no. 5, pp. 94–101,

2018. doi: 10.1109/MS.2018.3571228.

3. A. A. Ur Rahman and L. A. Wil-

liams, “Software security in DevOps:

Synthesizing practitioners’ percep-

tions and practices,” in Proc. Int.

Workshop Continuous Software

Evolution Delivery, 2016, pp. 70–76.

doi: 10.1145/2896941.2896946.

4. A. Rahman, A. Partho, D. Meder,

and L. A. Williams, “Which fac-

tors influence practitioners’ usage

of build automation tools?” in Proc.

2017 IEEE/ACM 3rd Int. Workshop

on Rapid Continuous Softw. Eng.

(RCoSE), pp. 20–26. doi: 10.1109/

RCoSE.2017.8.

From the analytical engine to the supercomputer,
from Pascal to von Neumann, from punched
cards to CD-ROMs—IEEE Annals of the History
of Computing covers the breadth of computer
history. � e quarterly publication
is an active center for the collection and
dissemination of information on historical
projects and organizations, oral history activities,
and international conferences.

www.computer.org/annals

Digital Object Identifier 10.1109/MS.2021.3068501

