
58 IEEE SOFTWARE // PUBLISHED BY THE IEEE COMPUTER SOCIET Y � 074 0 -74 5 9 /11/ $ 2 6 . 0 0 © 2 011 I E E E

GIVEN THE NEED TO COLLECT
REAL-TIME INFORMATION, inte-
grate business partners to reduce end-
to-end delivery times, and capitalize on
globalization, organizations increas-
ingly rely on interconnected systems
of systems (SoS) that provide capabili-
ties not found in single systems. Many
approaches exist for engineering these
SoS, ranging from point-to-point im-
plementations to much more dynamic,
ad hoc options in which confi gurations
aren’t known until runtime.

Service orientation is an approach
to software systems development that

has become a popular way to imple-
ment distributed, loosely coupled sys-
tems because it offers such features
as standardization, platform inde-
pendence, well-defi ned interfaces,
and tool support that enables legacy
system integration. In fact, service-
oriented architecture (SOA) has of-
fi cially “crossed the chasm” between
visionaries (the early adopters) and
pragmatists (the early majority), ac-
cording to a recent Software AG user
survey in which 90 percent of the re-
spondents claimed to have made some
commitment to SOA adoption.1 Gart-

ner’s latest report on hype cycles for
emerging technology shows SOA at
the midpoint of the “slope of enlight-
enment,” meaning that methodologies
and best practices are developing such
that the technology is close to main-
stream adoption.2 As with the various
approaches that came before it, we can
expect newer technologies to replace
or complement this approach eventu-
ally, but we believe service-orientation
principles, regardless of implementa-
tion technologies, are benefi cial to SoS
engineering.

Service-Oriented SoS
In a service-orientation approach,

• services provide reusable business
functionality via well-defi ned stan-
dardized interfaces to promote
interoperability;

• service consumers exploit function-
ality in available services;

• service interface and implementa-
tion are clearly separated to pro-
mote platform independence;

• a SOA infrastructure enables dis-
covery, composition, and invoca-
tion of services to promote loose
coupling between consumers and
services; and

• protocols are predominantly (but
not exclusively) message-based doc-
ument exchanges.

Figure 1 shows a high-level, notional
view of a service-oriented system.

An SoS is “a set or arrangement of
systems that results when independent
and useful systems are integrated into
a larger system that delivers unique ca-
pabilities.”3 We can therefore think of
a software-reliant SoS as one that re-
lies on software to accomplish its goals.
Figure 2 shows some SoS examples,
ranging from less complex to very.

Mark Maier identifi es fi ve SoS char-
acteristics that are useful in distin-

Service
Orientation
and Systems
of Systems
Grace Lewis, Edwin Morris, Soumya Simanta, and Dennis Smith,
Software Engineering Institute

// Interconnected systems of systems provide capabilities

that aren’t available in any single system. Fundamental

service-oriented principles can help in engineering them,

regardless of the implementation technologies used. //

FEATURE: SATURN CONTRIBUTIONS

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 59

guishing such systems from very large
and complex but monolithic systems:4

• operational independence of the
constituent systems;

• managerial independence of con-
stituent systems;

• evolutionary development;
• emergent behavior; and
• geographic distribution.

Maier also defi nes four types of SoS
based on their management structure:4

•	 directed, in which constituent sys-
tems are integrated and built to ful-
fi ll specifi c purposes;

•	 acknowledged, in which SoS have
recognized objectives, a designated
manager, and resources;

•	 collaborative, in which constituent
systems voluntarily agree to fulfi ll
central purposes; and

•	 virtual, which have no central au-
thority or centrally agreed purpose.

In accordance with these characteristics,
software-reliant SoS tend to be highly
distributed and formed from constitu-
ent software systems operated and man-
aged by different organizations.

Service orientation is becoming
much more common for SoS implemen-
tation because its characteristics sup-
port generally common goals, such as
cost-effi ciency, adaptability, business
agility, and leverage of legacy systems.
Other current technologies for imple-
menting SoS include cloud computing,
grid technologies, and event-driven ar-
chitecture. However, as software-reli-
ant SoS move from directed to virtual
paradigms, more complex technolo-
gies will be necessary to deal with the
lack of a central authority or a centrally
agreed purpose.

Leveraging
Service-Oriented Principles
Several service-oriented principles that
have contributed to wider SOA adop-

tion—standardization, loose coupling,
strategic service identifi cation, service
discovery mechanisms, and gover-
nance—also work for SoS.

Standardization
Although options abound for imple-
menting service-oriented systems, the
most common is based on the WS-*
set of standards for Web services.5
Standardization has many benefi ts for
service-oriented systems, including

• interoperability (promoted by stan-
dard interfaces to heterogeneous
technologies);

• ability to use third-party services;
• ability to use off-the-shelf tools

based on a single set of standards;
• enablement of other aspects of ser-

vice-oriented systems, such as ser-
vice discovery and composition; and

• potential for shorter development
times because all that a service
consumer needs to know to use a
service is contained in the service
description.

Standardization is a controversial
topic in many SoS settings, especially
in virtual settings in which systems that
have never come together will do so at
runtime. We believe that some level of

standardization is necessary, especially
in virtual SoS environments, to deal with
the lack of a centrally agreed purpose.

SoS benefi ts from standardization
because we can encapsulate the com-
plexity and heterogeneity of constitu-
ent systems to promote operational in-
dependence, managerial independence,
and geographic distribution of con-
stituent systems. Standardization also
enables other aspects of importance to
SoS, such as interface-based testing,
that are often diffi cult to achieve be-
cause of autonomy and independence
of constituent systems.6

Loose Coupling
Different architectural patterns empha-
size different forms of coupling, but
there’s always some form of it—for ex-
ample, data-centric systems are coupled
to data models, and event-driven sys-
tems are coupled to events and event
mechanisms.

Service orientation has two forms of
loose coupling:

•	 Between	 the	 service	 provider	 and	
the	 service	 consumer. In a service-
oriented environment, providers
and consumers know as little as
possible about each other. In the
case of WS-* -based Web services,

FIGURE 1. Notional view of a service-oriented system. Its main elements are services that

provide reusable functionality with well-de� ned interfaces; a service-oriented architecture

infrastructure that enables service discovery, composition, and invocation; and consumers

using functionality in available services.

End-user
application

SOA infrastructure

Enterprise
information system

Portal

Internal users

Legacy or new
service code

Internal
system Service

consumers

Infrastructure

Service
implementation

Service
interfaces

Data
transformationDiscoverySecurity

Internet

External
system

Service
D

External
consumer

Service
A

Service
B

Service
C

60 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SATURN CONTRIBUTIONS

potentially all that the consumer
needs to know to use a service is
contained in the service interface,
that is, the Web Services Descrip-
tion Language (WSDL) document
associated with the service. The
SOA infrastructure mediates many
of the differences between providers
and consumers and also centralizes
support for key quality attributes.

•	 Between	 the	 service	 interface	 and	
the	 service	 implementation. This
clear separation of service inter-
face and implementation is what
supports platform independence in
service-oriented systems. The stan-
dardized service interface hides the
technology details of the service
implementation, as well as its geo-
graphic location.

The main benefi t of supporting these
forms of loose coupling in SoS environ-
ments is the ability to hide technology
and constituent system locations. In a
service-oriented system, the SOA infra-
structure mediates differences between
service consumers and providers.7 This
mediation concept can be extended to

SoS environments to deal with differ-
ences between constituent systems.

We can also apply other principles
used in service-oriented systems to sup-
port loose coupling in SoS environments.
For example, technology shouldn’t bleed
through system interfaces (error mes-
sages in the service implementation
shouldn’t pass on to the service con-
sumer other than via standard error
messages that are part of the service
interface), and integration mechanisms
should be technology-neutral.

Strategic Service Identifi cation
In service-oriented environments, ser-
vice identifi cation occurs in the prob-
lem domain, based on the premise that
the business changes, not the technol-
ogy. The primary input is the set of
business goals for SOA adoption. Top-
down approaches identify business pro-
cesses that support business goals, and
common steps between these processes
become candidate services. Bottom-up
approaches identify legacy capabilities
that support business goals as candi-
date services. A combination of these
approaches leads to the identifi cation of

services that represent reusable business
capabilities.

This process for service identifi ca-
tion in SOA environments works in SoS
environments as well. In this case, busi-
ness processes map to SoS usage sce-
narios, and services map to constituent
system capabilities.

Service Discovery Mechanisms
In a service-oriented environment, ser-
vices are created and published some-
where that’s accessible to consumers
(registry, webpage, directory, and so on)
so that they can fi nd the services they
require. At a minimum, the metadata
associated with a service is its specifi ca-
tion or contract; any additional meta-
data is commonly stored in a repository
and includes attributes such as descrip-
tion, classifi cation, usage history, test
cases, test results, quality metrics, and
documentation. Metadata should in-
clude everything needed to discover
and reuse a capability, which mini-
mizes the interaction between develop-
ers and therefore promotes agility. It
should also include information about
its attributes once it’s discovered, such
as quality (performance limitations),
assumptions (encryption mechanisms),
and constraints (usage context).

SoS environments should consider
making a capabilities repository acces-
sible to constituent systems as well as
to SoS developers searching for capa-
bilities. Considerable tool support can
be leveraged for registry and repository
implementation.

Governance
SOA governance is the set of policies,
rules, and enforcement mechanisms for
developing, using, and evolving service-
oriented systems and for analyzing the
business value of those systems.8 SOA
governance has three types:

•	 Design-time	 governance includes
elements such as rules for strategic
identifi cation, reuse, development,

Word processor on a
stand-alone PC

Elevator Regional Health Information
Organization (RHIO)

Global information
grid (GIG)

Less complex More complex

Enterprise
software system

Modern automobile

Space Shuttle

Automobile networkMicrowave oven

FIGURE 2. Systems of systems (SoS) examples. A wide spectrum of SoS ranges from

the simple systems that we use on a daily basis such as PCs and microwave ovens to very

complex systems such as automobile networks that involve complex interactions between

vehicles and the environment.

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 61

and deployment of services as well
as policies to enforce consistency in
aspects such as use of standards, ref-
erence architectures, and processes.

•	 Runtime governance applies to de-
ployment and management of ser-
vice-oriented systems and includes
policies to enforce service execu-
tion according to policy and to en-
sure that important runtime data is
logged and analyzed.

•	 Change-time governance applies to
maintenance and evolution of ser-
vice-oriented systems and includes
policies for maintenance and evolu-
tion of service-oriented system ele-
ments as well as communication of
changes to stakeholders.

Something similar to SOA gover-
nance is necessary in SoS environments
to provide agreement on aspects such as
characteristics of capabilities registry;
design-time, runtime, and change-time
policies; establishment and monitoring
of service-level agreements (SLAs) be-
tween the SoS and constituent systems;
and tool support. Because of the inde-
pendent nature of constituent systems,
change-time governance is also key to
SoS. How are problems in constituent
systems reported? What happens if a
constituent system changes? How are
changes and upgrades in constituent
systems communicated? How will capa-
bilities of constituent services be tested?

What Doesn’t Yet Work Well
Even though multiple aspects of service
orientation can be applied in SoS en-
vironments, several aspects still aren’t
mature enough to support SoS, espe-
cially as we move toward virtual SoS.

Multi-Organizational
SOA Implementations
The top drivers for SOA adoption have
primarily focused internally: application
integration, data integration, and inter-
nal process improvement. Even though
this is changing, the number of organi-

zations that use service orientation for
external integration is still a minority.9
The execution of distributed develop-
ment tasks such as system assurance is
an ongoing challenge in SOA environ-
ments.10 Multi-organizational concerns,
such as trust, federation, and security,
are active research areas with few ex-
amples of large-scale implementations.

Standardization Quality
for Attribute Specification
Despite multiple standardization efforts
and research projects, there isn’t yet a
widespread standard for specification of
quality attributes such as security, avail-
ability, and performance. Standardiza-
tion in this area is key for enhanced ser-
vice discovery and for automated SLA
management and monitoring.

Support for Interoperability
beyond the Syntactic Level
Systems interoperability can only be
achieved with agreement at the syntac-
tic, semantic, and operational levels.
Interoperability exists at the syntactic
level when there’s agreement on data
representation. Semantic interoperabil-
ity requires agreement on the meaning
of the exchanged data. Finally, organi-
zational interoperability requires agree-
ment on how to act on the exchanged
data. Although mature standards for
SOA implementation such as XML and
WSDL support syntactic interoperabil-
ity, achieving semantic and organiza-
tional interoperability remains a re-
search challenge.11

Dynamic Service Discovery and Binding
Dynamism has various degrees. At the
lower end of the spectrum is late binding
of a proxy service to a specific service in-
stance that depends on user context or
load-balancing policies. At the higher
end is fully dynamic binding in which
service consumers are capable of query-
ing service registries at runtime, select-
ing the “best” service from the list, and
invoking the selected service. Late bind-

ing is a common, out-of-the-box feature
of many SOA infrastructure products.
Fully dynamic binding, on the other
hand, requires semantically described
services that use an ontology shared
between service consumers and service
providers. This is an active area of re-
search, as well as an unsolved problem.

SOA Governance Automation
Many aspects of SOA governance sim-
ply can’t be automated, especially in
design-time governance. In addition,
the behavioral aspects of governance
make it difficult to enforce without au-
tomation, especially in multi-organiza-
tional system implementations.

A Service-Oriented SoS
Engineering Approach
Figure 3 presents a service-oriented
SoS engineering approach. Even though
we recognize that it corresponds to an
ideal situation, it does embed the con-
cepts and trade-offs that would be nec-
essary for a service-oriented approach
to SoS engineering. The main actors in
Figure 3 include the following:

•	 SoS end user represents a user who
requires new SoS capabilities.

•	 SoS developer/integrator represents
the development/integration team
responsible for providing capabili-
ties to the SoS end user. In a col-
laborative and virtual SoS environ-
ment, the line between the SoS end
user and the SoS developer/integra-
tor is blurry. Especially in a virtual
SoS environment, the SoS end user
could perform the tasks of the SoS
developer/integrator.

•	 System developer represents the
constituent system’s development
team.

•	 System end user represents the con-
stituent system’s end users.

In the ideal process proposed in Fig-
ure 3, the cycle starts with an SoS end
user who has a requirement for new

62 IEEE SOFTWARE // WWW.COMPUTER.ORG/SOFTWARE

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS: MULTIPARADIGM PROGRAMMING

FOCUS
MULTIPARADIGM
PROGRAMMING

FOCUS MULTIPARADIGM PROGRAMMING

FEATURE: SATURN CONTRIBUTIONS

capabilities. Each step below corre-
sponds to its matching number in the
fi gure (although not explicit in the fi g-
ure, SoS governance is in place to ensure
that the process functions as described):

 1. An SoS end user has a requirement
for new capabilities.

 2. The SoS developer/integrator ana-
lyzes the new capability requirements.

 3. The SoS developer/integrator searches
the capabilities repository for match-
ing capabilities.

 4. The SoS developer/integrator analyzes
the returned matching capabilities.

 5. The capability requirements might
match an existing capability (to a
certain extent) or not. If there isn’t
a match, the SoS developer/integra-
tor might have the option of fi nding
other alternatives or requesting new
development.

If the capability exists in the capabili-
ties repository:

 6. If there isn’t a 100 percent match
between requirements and capabili-
ties, the SoS developer/integrator
might adapt the existing capability
by developing code to deal with the
mismatches.

 7. The SoS developer/integrator inte-
grates the new capability into the
SoS.

 8. The SoS developer/integrator tests
and validates the new capability
and its effect on the SoS.

 9. The SoS developer/integrator de-
ploys the new capability.

 10. The new capability is delivered
to the SoS end user.

If the capability doesn’t exist in the ca-
pabilities repository and the SoS devel-
oper/integrator can’t afford to wait for
development of new capabilities:

 11. The SoS developer/integrator looks
for alternatives either by repeating
the search with different criteria or

by presenting the SoS end user avail-
able capabilities and seeing if the end
user is willing to relax capability re-
quirements in exchange for faster de-
livery of capabilities.

 12. Process starts again at Step 2.

If the capability doesn’t exist in the ca-
pabilities repository, and the SoS devel-
oper/integrator can wait for develop-
ment of new capabilities (this is possible
for directed and acknowledged SoS en-
vironments but might not be possible in
collaborative and virtual ones):

 13. The SoS developer/integrator sends
requirements to the system developer.

 14. The system developer develops capa-
bilities that match the requirements.

 15. The system developer might decide to
make the new capability available to
system end users.

 16. The system developer standardizes
and publishes the new capability in
the capabilities repository. Depend-
ing on the type of relationship be-
tween the SoS developer/integrator
and the system developer, the SoS
developer/integrator could require
certain tests and compliance re-
quirements before publishing the
capability.

 17. After the new capability is pub-
lished, it’s now available to the SoS
developer/integrator who would re-
start the process at Step 3.

The time required to go through an it-
eration of this process highly depends on
how long the SoS end user can wait for
capabilities and how much he or she is
willing to accept mismatches in exchange
for quicker capability deployment.

I n an ideal service-oriented SoS
environment, constituent systems
would register their capabilities

in a service-oriented, standardized ca-
pabilities registry. SoS architects, inte-
grators, and developers would query

Capabilities
repository

Consituent
system

System of systems

Standardize and
publish capability

Develop
capability

Request new
development

17

16

15

15

4

3

Matching
capabilities

Standardized
capability

Capability

System
developer

Analyze
search results

Capability
exists?

Find
alternatives

[Adapt]
capability]

Integrate
capability

Search for
matching capabilities

Test and
validate

Deploy
capability

Analyze
requirements

No

No

Yes13

5

11

12

10

1

26 7

8

9

[Capability]

System end user SoS end user

SoS integration/
developer

Capability
requirements

Capability
requirements

FIGURE 3. Service-oriented SoS engineering approach. In this approach, the SoS

developer/integrator tries to match requirements to existing standardized capabilities that

are available in a capabilities repository before committing to any type of development “from

scratch.”

	 JANUARY/FEBRUARY 2011 \\ IEEE SOFTWARE � 63

this registry to fi nd capabilities that
meet desired functional and quality
attribute requirements. Each capabil-
ity in the registry would contain asso-
ciated metadata to be able to use the
capability.

Because of a lack of control over
SoS constituents providing these ca-
pabilities, SoS architects, integrators,
and developers would use practices that
include mechanisms to deal with this
challenge. One example is relying on
runtime-monitoring mechanisms in ad-
dition to testing for system assurance.
Another example is the use of defensive
programming practices such as excep-
tion-handling techniques and fallback
strategies to handle situations in which
constituent systems are unavailable.

The concept of service orientation
is here to stay, but its implementation
technologies will change over time to
meet new system requirements. For ex-
ample, both cloud computing and soft-
ware as a service are approaches largely
based on service orientation. SoS engi-
neering efforts could benefi t from ser-
vice-oriented principles that support
operational independence, manage-
rial independence, and geographic dis-
tribution of constituent systems. The
challenge for service-oriented SoS, as
well as for service-oriented systems in
general, is behavioral and not techno-
logical: the incentives and enforcement
mechanisms have to be in place for this
approach to succeed.

References
 1. “SOA Governance User Survey: Best Practices

for SOA Governance User Survey,” Software
AG, 2008; www.softwareag.com/Corporate/
res/SOAGovernanceSurvey.asp.

 2. “Hype Cycle for Emerging Technologies,”
Gartner Research, 2009; www.gartner.com/
DisplayDocument?id=1085912.

 3. “Systems Engineering Guide for Systems of
Systems,” Offi ce of the Undersecretary of
Defense for Acquisition, Technology, and
Logistics, Aug. 2008; www.acq.osd.mil/sse/
docs/SE-Guide-for-SoS.pdf.

 4. M. Maier, “Architecting Principles for
Systems-of-Systems,” Systems	Eng., vol. 1, no.

4, 1998, pp. 267–284.
 5. G. Lewis and L. Wrage, “Model Problems

in Technologies for Interoperability: Web
Services,” Software Eng. Inst., Carnegie Mel-
lon Univ., 2006; www.sei.cmu.edu/library/
abstracts/reports/06tn021.cfm.

 6. S. Ghosh, “Testing Component-Based Dis-
tributed Applications,” Purdue Univ., 2000;
http://docs.lib.purdue.edu/dissertations/
AAI3018200/.

 7. D. Chappell, Enterprise	Service	Bus, O’Reilly,
2004.

 8. S. Simanta et al., “A Scenario-Based
Technique for Developing SOA Technical
Governance,” Software Eng. Inst., Carnegie
Mellon Univ., 2009; www.sei.cmu.edu/library/

abstracts/reports/09tn009.cfm.
 9. “Enterprise and SMB Software Survey, North

America and Europe, Q4 2008,” Forrester,
2009; www.forrester.com/ER/Research/
Survey/Excerpt/1,5449,704,00.html.

 10. E. Morris et al., “Testing in SOA Environ-
ments,” tech. report CMU/SEI-2010-TR-011,
Software Eng. Inst., Carnegie Mellon Univ.,
2010; www.sei.cmu.edu/library/abstracts/
reports/10tr011.cfm.

 11. G. Lewis et al., “Why Standards Are Not
Enough to Guarantee End-to-End Interopera-
bility,” Proc.	7th	IEEE	Int’l	Conf.	Composi-
tion-Based	Software	Systems (ICCBSS 2008),
IEEE Press, 2008; http://ieeexplore.ieee.org/
xpls/abs_all.jsp?arnumber=4464021.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

GRACE LEWIS is	a	senior	member	of	the	technical	staff	at	the	Soft-
ware	Engineering	Institute	(SEI),	where	she’s	currently	the	lead	for	the	
System	of	Systems	Engineering	team	within	the	Systems	of	Systems	
Practice	(SoSP)	Initiative	in	the	Research,	Technology,	and	Systems	
Solutions	(RTSS)	program.	Her	current	interests	and	projects	are	in	
service-oriented	architecture	(SOA),	cloud	computing,	and	technologies	
for	systems	interoperability.	Her	latest	publications	include	multiple	
reports	and	articles	on	these	subjects	and	a	book	in	the	SEI	Software	

Engineering	Series.	Lewis	has	a	B.Sc.	in	systems	engineering	and	an	executive	MBA	from	
Icesi	University	in	Cali,	Colombia,	and	an	MS	in	software	engineering	from	Carnegie	Mellon	
University.	Contact	her	at	glewis@sei.cmu.edu.

EDWIN MORRIS is	a	senior	member	of	the	technical	staff	at	the	Soft-
ware	Engineering	Institute	(SEI)	with	more	than	20	years’	experience	
in	the	software	fi	eld,	including	design	and	development	of	embedded	
real-time	systems	and	support	tools,	management	of	technical	staff,	
and	support	for	a	wide	range	of	military,	government,	and	corporate	
enterprise	systems	of	systems	initiatives.	Morris	is	currently	a	member	
of	the	RTSS	program	at	the	SEI,	where	he’s	investigating	strategies	for	
employing	smartphone	technology	in	tactical	systems.	Contact	him	at	

ejm@sei.cmu.edu.

SOUMYA SIMANTA is	a	member	of	the	technical	staff	in	the	System	
of	Systems	Practice	(SoSP)	Initiative	of	the	Research,	Technology,	and	
Systems	Solutions	(RTSS)	Program	at	Carnegie	Mellon	University’s	
Software	Engineering	Institute	(SEI).	His	current	research	is	in	mobile	
computing,	service-oriented	computing,	and	evaluation	of	current	and	
emerging	technologies	for	engineering	systems	of	systems.	Before	
coming	to	the	SEI,	Simanta	performed	software	design	and	develop-
ment	in	the	fi	nance	and	telecommunication	domains,	working	for	one	of	

India’s	largest	software	companies.	He	has	a	B.E.	in	electronics	engineering	from	Sambalpur	
University	and	an	MS	in	software	engineering	from	CMU.	Contact	him	at	ssimanta@sei.cmu.
edu.

DENNIS SMITH leads	the	System	of	Systems	Practice	(SoSP)	
Initiative	in	the	Research,	Technology,	and	Systems	Solutions	(RTSS)	
Program	at	Carnegie	Mellon	University’s	Software	Engineering	
Institute	(SEI).	He	co-organized	the	development	of	a	SOA	research	
agenda	and	has	co-developed	SMART,	a	method	for	migrating	to	SOA	
environments.	Smith	is	a	member	of	the	executive	committee	of	IEEE’s	
Technical	Council	on	Software	Engineering	(TCSE).	He	has	an	MA	and	a	
PhD	from	Princeton	University	in	sociology,	and	a	BA	in	sociology	from	

Columbia	University.	Contact	him	at	dbs@sei.cmu.edu.

