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GIVEN THE NEED TO COLLECT 
REAL-TIME INFORMATION, inte-
grate business partners to reduce end-
to-end delivery times, and capitalize on 
globalization, organizations increas-
ingly rely on interconnected systems 
of systems (SoS) that provide capabili-
ties not found in single systems. Many 
approaches exist for engineering these 
SoS, ranging from point-to-point im-
plementations to much more dynamic, 
ad hoc options in which confi gurations 
aren’t known until runtime. 

Service orientation is an approach 
to software systems development that 

has become a popular way to imple-
ment distributed, loosely coupled sys-
tems because it offers such features 
as standardization, platform inde-
pendence, well-defi ned interfaces, 
and tool support that enables legacy 
system integration. In fact, service-
oriented architecture (SOA) has of-
fi cially “crossed the chasm” between 
visionaries (the early adopters) and 
pragmatists (the early majority), ac-
cording to a recent Software AG user 
survey in which 90 percent of the re-
spondents claimed to have made some 
commitment to SOA adoption.1 Gart-

ner’s latest report on hype cycles for 
emerging technology shows SOA at 
the midpoint of the “slope of enlight-
enment,” meaning that methodologies 
and best practices are developing such 
that the technology is close to main-
stream adoption.2 As with the various 
approaches that came before it, we can 
expect newer technologies to replace 
or complement this approach eventu-
ally, but we believe service-orientation 
principles, regardless of implementa-
tion technologies, are benefi cial to SoS 
engineering. 

Service-Oriented SoS
In a service-orientation approach, 

• services provide reusable business 
functionality via well-defi ned stan-
dardized interfaces to promote 
interoperability;

• service consumers exploit function-
ality in available services;

• service interface and implementa-
tion are clearly separated to pro-
mote platform independence;

• a SOA infrastructure enables dis-
covery, composition, and invoca-
tion of services to promote loose 
coupling between consumers and 
services; and

• protocols are predominantly (but 
not exclusively) message-based doc-
ument exchanges.

Figure 1 shows a high-level, notional 
view of a service-oriented system.

An SoS is “a set or arrangement of 
systems that results when independent 
and useful systems are integrated into 
a larger system that delivers unique ca-
pabilities.”3 We can therefore think of 
a software-reliant SoS as one that re-
lies on software to accomplish its goals. 
Figure 2 shows some SoS examples, 
ranging from less complex to very.

Mark Maier identifi es fi ve SoS char-
acteristics that are useful in distin-
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guishing such systems from very large 
and complex but monolithic systems:4

• operational independence of the 
constituent systems;

• managerial independence of con-
stituent systems;

• evolutionary development;
• emergent behavior; and
• geographic distribution.

Maier also defi nes four types of SoS 
based on their management structure:4

•	 directed, in which constituent sys-
tems are integrated and built to ful-
fi ll specifi c purposes;

•	 acknowledged, in which SoS have 
recognized objectives, a designated 
manager, and resources;

•	 collaborative, in which constituent 
systems voluntarily agree to fulfi ll 
central purposes; and

•	 virtual, which have no central au-
thority or centrally agreed purpose.

In accordance with these characteristics, 
software-reliant SoS tend to be highly 
distributed and formed from constitu-
ent software systems operated and man-
aged by different organizations. 

Service orientation is becoming 
much more common for SoS implemen-
tation because its characteristics sup-
port generally common goals, such as 
cost-effi ciency, adaptability, business 
agility, and leverage of legacy systems. 
Other current technologies for imple-
menting SoS include cloud computing, 
grid technologies, and event-driven ar-
chitecture. However, as software-reli-
ant SoS move from directed to virtual 
paradigms, more complex technolo-
gies will be necessary to deal with the 
lack of a central authority or a centrally 
agreed purpose. 

Leveraging 
Service-Oriented Principles
Several service-oriented principles that 
have contributed to wider SOA adop-

tion—standardization, loose coupling, 
strategic service identifi cation, service 
discovery mechanisms, and gover-
nance—also work for SoS.

Standardization
Although options abound for imple-
menting service-oriented systems, the 
most common is based on the WS-* 
set of standards for Web services.5 
Standardization has many benefi ts for 
service-oriented systems, including

• interoperability (promoted by stan-
dard interfaces to heterogeneous 
technologies);

• ability to use third-party services;
• ability to use off-the-shelf tools 

based on a single set of standards;
• enablement of other aspects of ser-

vice-oriented systems, such as ser-
vice discovery and composition; and

• potential for shorter development 
times because all that a service 
consumer needs to know to use a 
service is contained in the service 
description.

Standardization is a controversial 
topic in many SoS settings, especially 
in virtual settings in which systems that 
have never come together will do so at 
runtime. We believe that some level of 

standardization is necessary, especially 
in virtual SoS environments, to deal with 
the lack of a centrally agreed purpose.

SoS benefi ts from standardization 
because we can encapsulate the com-
plexity and heterogeneity of constitu-
ent systems to promote operational in-
dependence, managerial independence, 
and geographic distribution of con-
stituent systems. Standardization also 
enables other aspects of importance to 
SoS, such as interface-based testing, 
that are often  diffi cult to achieve be-
cause of autonomy and independence 
of constituent systems.6 

Loose Coupling 
Different architectural patterns empha-
size different forms of coupling, but 
there’s always some form of it—for ex-
ample, data-centric systems are coupled 
to data models, and event-driven sys-
tems are coupled to events and event 
mechanisms.

Service orientation has two forms of 
loose coupling:

•	 Between	 the	 service	 provider	 and	
the	 service	 consumer. In a service-
oriented environment, providers 
and consumers know as little as 
possible about each other. In the 
case of WS-* -based Web services, 

FIGURE 1. Notional view of a service-oriented system. Its main elements are services that 

provide reusable functionality with well-de� ned interfaces; a service-oriented architecture 

infrastructure that enables service discovery, composition, and invocation; and consumers 

using functionality in available services.
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potentially all that the consumer 
needs to know to use a service is 
contained in the service interface, 
that is, the Web Services Descrip-
tion Language (WSDL) document 
associated with the service. The 
SOA infrastructure mediates many 
of the differences between providers 
and consumers and also centralizes 
support for key quality attributes.

•	 Between	 the	 service	 interface	 and	
the	 service	 implementation. This 
clear separation of service inter-
face and implementation is what 
supports platform independence in 
service-oriented systems. The stan-
dardized service interface hides the 
technology details of the service 
implementation, as well as its geo-
graphic location.

The main benefi t of supporting these 
forms of loose coupling in SoS environ-
ments is the ability to hide technology 
and constituent system locations. In a 
service-oriented system, the SOA infra-
structure mediates differences between 
service consumers and providers.7 This 
mediation concept can be extended to 

SoS environments to deal with differ-
ences between constituent systems.

We can also apply other principles 
used in service-oriented systems to sup-
port loose coupling in SoS environments. 
For example, technology shouldn’t bleed 
through system interfaces (error mes-
sages in the service implementation 
shouldn’t pass on to the service con-
sumer other than via standard error 
messages that are part of the service 
interface), and integration mechanisms 
should be technology-neutral.

Strategic Service Identifi cation
In service-oriented environments, ser-
vice identifi cation occurs in the prob-
lem domain, based on the premise that 
the business changes, not the technol-
ogy. The primary input is the set of 
business goals for SOA adoption. Top-
down approaches identify business pro-
cesses that support business goals, and 
common steps between these processes 
become candidate services. Bottom-up 
approaches identify legacy capabilities 
that support business goals as candi-
date services. A combination of these 
approaches leads to the identifi cation of 

services that represent reusable business 
capabilities.

This process for service identifi ca-
tion in SOA environments works in SoS 
environments as well. In this case, busi-
ness processes map to SoS usage sce-
narios, and services map to constituent 
system capabilities. 

Service Discovery Mechanisms
In a service-oriented environment, ser-
vices are created and published some-
where that’s accessible to consumers 
(registry, webpage, directory, and so on) 
so that they can fi nd the services they 
require. At a minimum, the metadata 
associated with a service is its specifi ca-
tion or contract; any additional meta-
data is commonly stored in a repository 
and includes attributes such as descrip-
tion, classifi cation, usage history, test 
cases, test results, quality metrics, and 
documentation. Metadata should in-
clude everything needed to discover 
and reuse a capability, which mini-
mizes the interaction between develop-
ers and therefore promotes agility. It 
should also include information about 
its attributes once it’s discovered, such 
as quality (performance limitations), 
assumptions (encryption mechanisms), 
and constraints (usage context).

SoS environments should consider 
making a capabilities repository acces-
sible to constituent systems as well as 
to SoS developers searching for capa-
bilities. Considerable tool support can 
be leveraged for registry and repository 
implementation. 

Governance
SOA governance is the set of policies, 
rules, and enforcement mechanisms for 
developing, using, and evolving service-
oriented systems and for analyzing the 
business value of those systems.8 SOA 
governance has three types:

•	 Design-time	 governance includes 
elements such as rules for strategic 
identifi cation, reuse, development, 
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FIGURE 2. Systems of systems (SoS) examples. A wide spectrum of SoS ranges from 

the simple systems that we use on a daily basis such as PCs and microwave ovens to very 

complex systems such as automobile networks that involve complex interactions between 

vehicles and the environment.
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and deployment of services as well 
as policies to enforce consistency in 
aspects such as use of standards, ref-
erence architectures, and processes.

•	 Runtime governance applies to de-
ployment and management of ser-
vice-oriented systems and includes 
policies to enforce service execu-
tion according to policy and to en-
sure that important runtime data is 
logged and analyzed.

•	 Change-time governance applies to 
maintenance and evolution of ser-
vice-oriented systems and includes 
policies for maintenance and evolu-
tion of service-oriented system ele-
ments as well as communication of 
changes to stakeholders. 

Something similar to SOA gover-
nance is necessary in SoS environments 
to provide agreement on aspects such as 
characteristics of capabilities registry; 
design-time, runtime, and change-time 
policies; establishment and monitoring 
of service-level agreements (SLAs) be-
tween the SoS and constituent systems; 
and tool support. Because of the inde-
pendent nature of constituent systems, 
change-time governance is also key to 
SoS. How are problems in constituent 
systems reported? What happens if a 
constituent system changes? How are 
changes and upgrades in constituent 
systems communicated? How will capa-
bilities of constituent services be tested?

What Doesn’t Yet Work Well 
Even though multiple aspects of service 
orientation can be applied in SoS en-
vironments, several aspects still aren’t 
mature enough to support SoS, espe-
cially as we move toward virtual SoS.

Multi-Organizational  
SOA Implementations
The top drivers for SOA adoption have 
primarily focused internally: application 
integration, data integration, and inter-
nal process improvement. Even though 
this is changing, the number of organi-

zations that use service orientation for 
external integration is still a minority.9 
The execution of distributed develop-
ment tasks such as system assurance is 
an ongoing challenge in SOA environ-
ments.10 Multi-organizational concerns, 
such as trust, federation, and security, 
are active research areas with few ex-
amples of large-scale implementations.

Standardization Quality 
for Attribute Specification
Despite multiple standardization efforts 
and research projects, there isn’t yet a 
widespread standard for specification of 
quality attributes such as security, avail-
ability, and performance. Standardiza-
tion in this area is key for enhanced ser-
vice discovery and for automated SLA 
management and monitoring.

Support for Interoperability  
beyond the Syntactic Level
Systems interoperability can only be 
achieved with agreement at the syntac-
tic, semantic, and operational levels. 
Interoperability exists at the syntactic 
level when there’s agreement on data 
representation. Semantic interoperabil-
ity requires agreement on the meaning 
of the exchanged data. Finally, organi-
zational interoperability requires agree-
ment on how to act on the exchanged 
data. Although mature standards for 
SOA implementation such as XML and 
WSDL support syntactic interoperabil-
ity, achieving semantic and organiza-
tional interoperability remains a re-
search challenge.11 

Dynamic Service Discovery and Binding
Dynamism has various degrees. At the 
lower end of the spectrum is late binding 
of a proxy service to a specific service in-
stance that depends on user context or 
load-balancing policies. At the higher 
end is fully dynamic binding in which 
service consumers are capable of query-
ing service registries at runtime, select-
ing the “best” service from the list, and 
invoking the selected service. Late bind-

ing is a common, out-of-the-box feature 
of many SOA infrastructure products. 
Fully dynamic binding, on the other 
hand, requires semantically described 
services that use an ontology shared 
between service consumers and service 
providers. This is an active area of re-
search, as well as an unsolved problem.

SOA Governance Automation
Many aspects of SOA governance sim-
ply can’t be automated, especially in 
design-time governance. In addition, 
the behavioral aspects of governance 
make it difficult to enforce without au-
tomation, especially in multi-organiza-
tional system implementations.

A Service-Oriented SoS 
Engineering Approach
Figure 3 presents a service-oriented 
SoS engineering approach. Even though 
we recognize that it corresponds to an 
ideal situation, it does embed the con-
cepts and trade-offs that would be nec-
essary for a service-oriented approach 
to SoS engineering. The main actors in 
Figure 3 include the following:

•	 SoS end user represents a user who 
requires new SoS capabilities. 

•	 SoS developer/integrator represents 
the development/integration team 
responsible for providing capabili-
ties to the SoS end user. In a col-
laborative and virtual SoS environ-
ment, the line between the SoS end 
user and the SoS developer/integra-
tor is blurry. Especially in a virtual 
SoS environment, the SoS end user 
could perform the tasks of the SoS 
developer/integrator. 

•	 System developer represents the 
constituent system’s development 
team.

•	 System end user represents the con-
stituent system’s end users.

In the ideal process proposed in Fig-
ure 3, the cycle starts with an SoS end 
user who has a requirement for new  
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capabilities. Each step below corre-
sponds to its matching number in the 
fi gure (although not explicit in the fi g-
ure, SoS governance is in place to ensure 
that the process functions as described):

 1. An SoS end user has a requirement 
for new capabilities.

 2. The SoS developer/integrator ana-
lyzes the new capability requirements. 

 3. The SoS developer/integrator searches 
the capabilities repository for match-
ing capabilities. 

 4. The SoS developer/integrator analyzes 
the returned matching capabilities.

 5. The capability requirements might 
match an existing capability (to a 
certain extent) or not. If there isn’t 
a match, the SoS developer/integra-
tor might have the option of fi nding 
other alternatives or requesting new 
development. 

If the capability exists in the capabili-
ties repository:

 6. If there isn’t a 100 percent match 
between requirements and capabili-
ties, the SoS developer/integrator 
might adapt the existing capability 
by developing code to deal with the 
mismatches. 

 7. The SoS developer/integrator inte-
grates the new capability into the 
SoS.

 8. The SoS developer/integrator tests 
and validates the new capability 
and its effect on the SoS.

 9. The SoS developer/integrator de-
ploys the new capability.

 10. The new capability is delivered 
to the SoS end user.

If the capability doesn’t exist in the ca-
pabilities repository and the SoS devel-
oper/integrator can’t afford to wait for 
development of new capabilities:

 11. The SoS developer/integrator looks 
for alternatives either by repeating 
the search with different criteria or 

by presenting the SoS end user avail-
able capabilities and seeing if the end 
user is willing to relax capability re-
quirements in exchange for faster de-
livery of capabilities. 

 12. Process starts again at Step 2.

If the capability doesn’t exist in the ca-
pabilities repository, and the SoS devel-
oper/integrator can wait for develop-
ment of new capabilities (this is possible 
for directed and acknowledged SoS en-
vironments but might not be possible in 
collaborative and virtual ones):

 13. The SoS developer/integrator sends 
requirements to the system developer.

 14. The system developer develops capa-
bilities that match the requirements.

 15. The system developer might decide to 
make the new capability available to 
system end users.

 16. The system developer standardizes 
and publishes the new capability in 
the capabilities repository. Depend-
ing on the type of relationship be-
tween the SoS developer/integrator
and the system developer, the SoS 
developer/integrator could require 
certain tests and compliance re-
quirements before publishing the 
capability.

 17. After the new capability is pub-
lished, it’s now available to the SoS 
developer/integrator who would re-
start the process at Step 3.

The time required to go through an it-
eration of this process highly depends on 
how long the SoS end user can wait for 
capabilities and how much he or she is 
willing to accept mismatches in exchange 
for quicker capability deployment.

I n an ideal service-oriented SoS 
environment, constituent systems 
would register their capabilities 

in a service-oriented, standardized ca-
pabilities registry. SoS architects, inte-
grators, and developers would query 
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this registry to fi nd capabilities that 
meet desired functional and quality 
attribute requirements. Each capabil-
ity in the registry would contain asso-
ciated metadata to be able to use the 
capability. 

Because of a lack of control over 
SoS constituents providing these ca-
pabilities, SoS architects, integrators, 
and developers would use practices that 
include mechanisms to deal with this 
challenge. One example is relying on 
runtime-monitoring mechanisms in ad-
dition to testing for system assurance. 
Another example is the use of defensive 
programming practices such as excep-
tion-handling techniques and fallback 
strategies to handle situations in which 
constituent systems are unavailable.

The concept of service orientation 
is here to stay, but its implementation 
technologies will change over time to 
meet new system requirements. For ex-
ample, both cloud computing and soft-
ware as a service are approaches largely 
based on service orientation. SoS engi-
neering efforts could benefi t from ser-
vice-oriented principles that support 
operational independence, manage-
rial independence, and geographic dis-
tribution of constituent systems. The 
challenge for service-oriented SoS, as 
well as for service-oriented systems in 
general, is behavioral and not techno-
logical: the incentives and enforcement 
mechanisms have to be in place for this 
approach to succeed.
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