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FEATURE: BIG DATA SOFTWARE SYSTEMS

Distribution, 
Data, 
Deployment
Software Architecture 
Convergence 
in Big Data Systems

Ian Gorton and John Klein, Software Engineering Institute

// Big data systems present many challenges to 

software architects. In particular, distributed 

software architectures become tightly coupled 

to data and deployment architectures. This 

causes a consolidation of concerns; designs 

must be harmonized across these three 

architectures to satisfy quality requirements. //

THE EXPONENTIAL GROWTH of 
data over the last decade has fueled a 
new specialization for software tech-
nology: data-intensive, or big data, 
software systems.1 Internet-born or-
ganizations such as Google and Am-
azon are on this revolution’s cutting 
edge, collecting, managing, storing, 
and analyzing some of the largest 

data repositories ever constructed. 
Their pioneering efforts,2,3 along 
with those of numerous other big 
data innovators, have provided a va-
riety of open source and commercial 
data management technologies that 
let any organization construct and 
operate massively scalable, highly 
available data repositories.

Addressing the challenges of soft-
ware for big data systems requires 
careful design tradeoffs spanning 
the distributed software, data, and 
deployment architectures. It also 
requires extending traditional soft-
ware architecture design knowledge 
to account for the tight coupling 
that exists in scalable systems. Scale 
drives a consolidation of concerns, 
so that distribution, data, and de-
ployment architectural qualities can 
no longer be effectively considered 
separately. To illustrate this, we’ll 
use an example from our current re-
search in healthcare informatics.

The Challenges 
of Big Data
Data-intensive systems have long 
been built on SQL database tech-
nology, which relies primarily on 
vertical scaling—faster processors 
and bigger disks—as workload or 
storage requirements increase. SQL 
databases’ inherent vertical-scaling 
limitations4 have led to new prod-
ucts that relax many core tenets of 
relational databases. Strictly de� ned 
normalized data models, strong data 
consistency guarantees, and the 
SQL standard have been replaced 
by schemaless and intentionally de-
normalized data models, weak con-
sistency, and proprietary APIs that 
expose the underlying data man-
agement mechanisms to the pro-
grammer. These NoSQL products4

typically are designed to scale hori-
zontally across clusters of low-cost, 
moderate- performance servers. They 
achieve high performance, elastic 
storage capacity, and availability by 
partitioning and replicating datasets 
across a cluster. Prominent examples 
of NoSQL databases include Cas-
sandra, Riak, and MongoDB (see the 
sidebar “NoSQL Databases”).

Distributed databases have funda-
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NOSQL DATABASES
The rise of big data applications has caused a signi� cant � ux 
in database technologies. While mature relational database 
technologies continue to evolve, a spectrum of databases 
called NoSQL has emerged over the past decade. The rela-
tional model imposes a strict schema, which inhibits data 
evolution and causes dif� culties scaling across clusters. In 
response, NoSQL databases have adopted simpler data mod-
els. Common features include schemaless records, allowing 
data models to evolve dynamically, and horizontal scaling, by 
sharding (partitioning and distributing) and replicating data 
collections across large clusters. Figure A illustrates the four 
most prominent data models, whose characteristics we sum-
marize here. More comprehensive information is at http://
nosql-database.org.

Document databases (see Figure A1) store collections of 
objects, typically encoded using JSON (JavaScript Object 
Notation) or XML. Documents have keys, and you can build 
secondary indexes on nonkey � elds. Document formats are 
self-describing; a collection might include documents with 
different formats. Leading examples are MongoDB (www
.mongodb.org) and CouchDB (http://couchdb.apache.org).

Key–value databases (see Figure A2) implement a distrib-
uted hash map. Records can be accessed primarily through 
key searches, and the value associated 
with each key is treated as opaque, requir-
ing reader interpretation. This simple model 
facilitates sharding and replication to cre-
ate highly scalable and available systems. 
Examples are Riak (http://riak.basho.com) 
and DynamoDB (http://aws.amazon.com/
dynamodb).

Column-oriented databases (see Figure 
A3) extend the key–value model by organiz-
ing keyed records as a collection of columns, 
where a column is a key–value pair. The key 
becomes the column name; the value can 
be an arbitrary data type such as a JSON 
document or binary image. A collection can 
contain records with different numbers of 
columns. Examples are HBase (http://hbase
.apache.org) and Cassandra (https:/
/cassandra.apache.org).

Graph databases (see Figure A4) orga-
nize data in a highly connected structure—

typically, some form of directed graph. They can provide ex-
ceptional performance for problems involving graph traversals 
and subgraph matching. Because ef� cient graph partition-
ing is an NP-hard problem, these databases tend to be less 
concerned with horizontal scaling and commonly offer ACID 
(atomicity, consistency, isolation, durability) transactions to 
provide strong consistency. Examples include Neo4j (www
.neo4j.org) and GraphBase (http://graphbase.net).

NoSQL technologies have many implications for applica-
tion design. Because there’s no equivalent of SQL, each tech-
nology supports its own query mechanism. These mecha-
nisms typically make the application programmer responsible 
for explicitly formulating query executions, rather than relying 
on query planners that execute queries based on declara-
tive speci� cations. The programmer is also responsible for 
combining results from different data collections. This lack of 
the ability to perform JOINs forces extensive denormalization 
of data models so that JOIN-style queries can be ef� ciently 
executed by accessing a single data collection. When data-
bases are sharded and replicated, the programmer also must 
manage consistency when concurrent updates occur and 
must design applications to tolerate stale data due to latency 
in update replication.

“is employed by”

“previously employed by”

“id”: “1”, “Name”: “John”, “Employer”: “SEI”
“id”: “2”, “Name”: “Ian”, “Employer”: “SEI”, “Previous”: “PNNL”
(1)

“key”: “1”, value{“Name”: “John”, “Employer”: “SEI”}
“key”: “2”, value{“Name”: “Ian”, “Employer”: “SEI”, “Previous”: “PNNL”}
(2)

“row”: “1”, “Employer” “Name”
 “SEI” “John”

“row”: “2”, “Employer” “Name”       “Previous”
 “SEI” “Ian” “PNNL”

(3)

Node: Employee                            Node: Employer
“id”: “1”, “Name”: “John”              “Name”: “SEI”
“id”: “2”, “Name”: “Ian”

                                   “Name”:  “PNNL”

(4)

FIGURE A. Four major NoSQL data models. (1) A document store. (2) A key–

value store. (3) A column store. (4) A graph store.
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mental quality constraints, defined 
by Eric Brewer’s CAP (consistency, 
availability, partition tolerance) the-
orem.5 When a network partition 
occurs (causing an arbitrary mes-
sage loss between cluster nodes), a 
system must trade consistency (all 
readers see the same data) against 
availability (every request receives a 
success or failure response). Daniel 
Abadi’s PACELC provides a practi-
cal interpretation of this theorem.6 If 
a partition (P) occurs, a system must 
trade availability (A) against consis-
tency (C). Else (E), in the usual case 
of no partition, a system must trade 
latency (L) against consistency (C).

Additional design challenges for 
scalable data-intensive systems stem 
from the following three issues. 

First, achieving high scalability and 
availability leads to highly distrib-
uted systems. Distribution occurs in 
all tiers, from webserver farms and 
caches to back-end storage.

Second, the abstraction of a sin-
gle system image, with transactional 
writes and consistent reads using 
SQL-like query languages, is diffi-
cult to achieve at scale.7 Applications 
must be aware of data replicas; han-
dle inconsistencies from conflicting 
replica updates; and continue opera-
tion in spite of inevitable processor, 
network, and software failures.

Third, each NoSQL product em-
bodies a specific set of quality attri-
bute tradeoffs, especially in terms of 
performance, scalability, durability, 
and consistency. Architects must dil-

igently evaluate candidate database 
technologies and select databases 
that can satisfy application require-
ments. This often leads to polyglot 
persistence—using different data-
base technologies to store different 
datasets in a single system, to meet 
quality attribute requirements.8

Furthermore, as data volumes 
grow to petascale and beyond, the 
required hardware resources grow 
from hundreds to tens of thousands 
of servers. At this deployment scale, 
many widely used software architec-
ture patterns are unsuitable. Archi-
tectural and algorithmic approaches 
that are sensitive to hardware re-
source use can significantly reduce 
overall costs. For more on this, see 
the sidebar “Why Scale Matters.”

Big Data Application 
Characteristics
Big data applications are rapidly 
becoming pervasive across a range 
of business domains. One example 
domain in which big data analytics 
looms prominently on the horizon 
is aeronautics. Modern commer-
cial airliners produce approximately 
0.5 Tbytes of operational data per 
flight.9 This data can be used to di-
agnose faults in real time, optimize 
fuel consumption, and predict main-
tenance needs. Airlines must build 
scalable systems to capture, manage, 
and analyze this data to improve re-
liability and reduce costs.

Another domain is healthcare. 
Big data analytics in US healthcare 
could save an estimated $450 bil-

lion.10 Analysis of petabytes of data 
across patient populations, taken 
from diverse sources such as insur-
ance payers, public health entities, 
and clinical studies, can reduce costs 
by improving patient outcomes. In 
addition, operational efficiencies 
can extract new insights for disease 
treatment and prevention.

Across these and many other do-
mains, big data systems share four 
requirements that drive the design of 
suitable software solutions. Collec-
tively, these requirements represent 
a significant departure from tradi-
tional business systems, which are 
relatively well constrained in terms 
of data growth, analytics, and scale.

First, from social media sites to 
high-resolution sensor data collec-
tion in the power grid, big data sys-
tems must be able to sustain write-
heavy workloads.1 Because writes 
are costlier than reads, systems can 
use data sharding (partitioning and 
distribution) to spread write opera-
tions across disks and can use rep-
lication to provide high availability. 
Sharding and replication introduce 
availability and consistency issues 
that the systems must address.

The second requirement is to deal 
with variable request loads. Business 
and government systems experience 
highly variable workloads for rea-
sons including product promotions, 
emergencies, and statutory deadlines 
such as tax submissions. To avoid the 
costs of overprovisioning to handle 
these occasional spikes, cloud plat-
forms are elastic, letting applications 
add processing capacity to share 
loads and release resources when 
loads drop. Effectively exploiting this 
deployment mechanism requires ar-
chitectures with application-specific 
strategies to detect increased loads, 
rapidly add new resources, and re-
lease them as necessary.

Big data systems must be able to sustain 
write-heavy workloads.
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software and data architectures to 
partition simultaneously between 
low-latency requests and requests 
for advanced analytics on large 
data collections, to continually en-
hance personalized recommenda-
tions’ quality.11

lytics on significant portions of 
the data collection. This leads to 
software and data architectures 
explicitly structured to meet these 
varying latency demands. Netflix’s 
Recommendations Engine is a pio-
neering example of how to design 

The third requirement is to sup-
port computation-intensive analyt-
ics. Most big data systems must 
support diverse query workloads, 
mixing requests that require rapid 
responses with long-running re-
quests that perform complex ana-

WHY SCALE MATTERS
Scale has many implications for software architecture; here 
we look at several.

The first implication focuses on how scale changes our 
designs’ problem space. Big data systems are inherently 
distributed. Their architectures must explicitly handle partial 
failures, communication latencies, concurrency, consistency, 
and replication. As systems grow to thousands of process-
ing nodes and disks and become geographically distributed, 
these issues are exacerbated as the probability of a hardware 
failure increases. One study found that 8 percent of servers in 
a typical datacenter experience a hardware problem annually, 
with disk failure most common.1 Applications must also deal 
with unpredictable communication latencies and network 
connection failures. Scalable applications must treat failures 
as common events that are handled gracefully to ensure un-
interrupted operation.

To deal with these issues, resilient architectures must ful-
fill two requirements. First, they must replicate data to ensure 
availability in the case of a disk failure or network partition. 
Replicas must be kept strictly or eventually consistent, using 
either master–slave or multimaster protocols. The latter need 
mechanisms such as Lamport clocks2 to resolve inconsisten-
cies due to concurrent writes.

Second, architecture components must be stateless, 
replicated, and tolerant of failures of dependent services. For 
example, by using the Circuit Breaker pattern3 and returning 
cached or default results whenever failures are detected, an 
architecture limits failures and allows time for recovery.

Another implication is economics based. At very large 
scales, small optimizations in resource use can lead to very 
large cost reductions in absolute terms. Big data systems can 
use many thousands of servers and disks. Whether these are 
capital purchases or rented from a service provider, they remain 
a major cost and hence a target for reduction. Elasticity can re-
duce resource use by dynamically deploying new servers as the 
load increases and releasing them as the load decreases. This 
requires servers that boot and initialize quickly and application-
specific strategies to avoid premature resource release.

Other strategies target the development tool chain to 
maintain developer productivity while decreasing resource 
use. For example, Facebook built HipHop, a PHP-to-C++ 
transformation engine that reduced the CPU load for serving 
Web pages by 50 percent.4 At the scale of Facebook’s deploy-
ment, this creates significant operational-cost savings. Other 
targets for reduction are software license costs, which can be 
prohibitive at scale. This has led some organizations to cre-
ate custom database and middleware technologies, many of 
which have been released as open source. Leading examples 
of technologies for big data systems are from Netflix (http://
netflix.github.io) and LinkedIn (http://linkedin.github.io).

Other implications of scale include testing and fault diag-
nosis. Owing to these systems’ deployment footprints and the 
massive datasets they manage, comprehensively validating 
code before deployment to production can be impossible. 
Canary testing and Netflix’s Simian Army are examples of the 
state of the art in testing at scale.5 When problems occur in 
production, advanced monitoring and logging are needed for 
rapid diagnosis. In large-scale systems, log collection and 
analysis itself quickly becomes a big data problem. Solutions 
must include a low-overhead, scalable logging infrastructure 
such as Blitz4j.6
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The fourth requirement is high 
availability. With thousands of nodes 
in a horizontally scaled deployment, 
hardware and network failures inev-
itably occur. So, distributed software 
and data architectures must be resil-
ient. Common approaches for high 
availability include replicating data 
across geographical regions,12 state-
less services, and application-speci� c 
mechanisms to provide degraded 
service in the face of failures.

These requirements’ solutions 
crosscut the distribution, data, and 
deployment architectures. For exam-
ple, elasticity requires

• processing capacity that can be 
acquired from the execution 
platform on demand,

• policies and mechanisms to 
appropriately start and stop 
services as the application load 
varies, and

• a database architecture that can 

reliably satisfy queries under an 
increased load.

This coupling of architectures to sat-
isfy a particular quality attribute is 
common in big data applications. It 
can be regarded as a tight coupling 
of the process, logical, and physical 
views in the 4 + 1 view model.13

An Example of the 
Consolidation of 
Concerns
At the Software Engineering Insti-
tute, we’re helping to evolve a sys-
tem to aggregate data from multiple 
petascale medical-record databases 
for clinical applications. To attain 
high scalability and availability at 
low cost, we’re investigating using 
NoSQL databases for this aggrega-
tion. The design uses geographically 
distributed datacenters to increase 
availability and reduce latency for 
globally distributed users.

Consider the consistency require-
ments for two categories of data in 
this system: patient demographics 
(for example, name and insurance 
provider) and diagnostic-test results 
(for example, blood or imaging test 
results). Patient demographic records 
are updated infrequently. These up-
dates must be immediately visible 
at the local site where the data was 
modi� ed (“read your writes”), but a 
delay is acceptable before the update 
is visible at other sites (“eventual 
replica consistency”). In contrast, 
diagnostic- test results are updated 
more frequently, and changes must 
be immediately visible everywhere 
to support telemedicine and re-
mote consultations with specialists 
(“strong replica consistency”).

We’re prototyping solutions using 
several NoSQL databases. We focus 
here on one prototype using Mon-
goDB to illustrate the architecture 
drivers and design decisions. The 
design segments data across three 
shards and replicates data across 
two datacenters (see Figure 1).

MongoDB enforces a master–
slave architecture; every data collec-
tion has a master replica that serves 
all write requests and propagates 
changes to other replicas. Clients 
can read from any replica, opening 
an inconsistency window between 
writes to the master and reads from 
other replicas.

MongoDB allows tradeoffs be-
tween consistency and latency 
through parameter options on each 
write and read. A write can be un-
acknowledged (no assurance of du-
rability, low latency), durable on 
the master replica, or durable on 
the master and one or more replicas 
(consistent, high latency). A read can 
prefer the closest replica (potentially 
inconsistent, low latency), be re-
stricted to the master replica (consis-

Web or application
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Web or application
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Web or application
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Global
network

Data replication
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Test results data
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Shard
2

Shard
3
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2
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3
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2
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FIGURE 1. A MongoDB-based healthcare data management prototype. 

Geographically distributed datacenters increase availability and reduce latency for 

globally distributed users.
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tent, partition intolerant), or require 
most replicas to agree on the data 
value to be read (consistent, parti-
tion tolerant).

The application developer must 
choose appropriate write and read 
options to achieve the desired per-
formance, consistency, and durabil-
ity and must handle partition errors 
to achieve the desired availability. In 
our example, patient demographic 
data writes must be durable on the 
primary replica, but reads can be di-
rected to the closest replica for low 
latency. This makes patient demo-
graphic reads insensitive to network 
partitions at the cost of potentially 
inconsistent responses.

In contrast, writes for diagnostic-
test results must be durable on all 
replicas. Reads can be performed 
from the closest replica because the 
write ensures that all replicas are 
consistent. This means writes must 
handle failures caused by network 
partitions, whereas reads are insensi-
tive to partitions.

Today, our healthcare informatics 
application runs atop an SQL data-
base, which hides the physical data 
model and deployment topology 
from developers. SQL databases pro-
vide a single-system-image abstrac-
tion, which separates concerns be-
tween the application and database 
by hiding the details of data distri-
bution across processors, storage, 
and networks behind a transactional 
read/write interface.14 In shifting to 
a NoSQL environment, an applica-
tion must directly handle the faults 
that will depend on the physical 
data distribution (sharding and rep-
lication) and the number of replica 
sites and servers. These low-level in-
frastructure concerns, traditionally 
hidden under the database interface, 
must now be explicitly handled in 
application logic.

Systematic Design 
Using Tactics
In designing an architecture to sat-
isfy quality drivers such as those in 
this healthcare example, one proven 
approach is to systematically select 
and apply a sequence of architec-
ture tactics.15 Tactics are elemental 
design decisions, embodying archi-
tectural knowledge of how to satisfy 
one design concern of a quality attri-
bute. Tactic catalogs enable reuse of 
this knowledge. However, existing 
catalogs don’t contain tactics spe-
ci� c to big data systems.

Figures 2 and 3 extend the basic 
performance and availability tac-
tics15 to big data systems. Figure 4 
de� nes scalability tactics, focusing 
on the design concern of increased 
workloads. Each � gure shows 
how the design decisions span the 
data, distribution, and deployment 
architectures.

For example, achieving availabil-

ity requires masking faults that inev-
itably occur in a distributed system. 
At the data level, replicating data 
items is an essential step to handle 
network partitions. When an ap-
plication can’t access any database 
partition, another tactic to enhance 
availability is to design a data model 
that can return meaningful default 
values without accessing the data. 
At the distributed-software layer, 
caching is a tactic to achieve the 
default- values tactic de� ned in the 
data model. At the deployment layer, 
an availability tactic is to geographi-
cally replicate the data and distrib-
uted application software layers to 
protect against power and network 
outages. Each of these tactics is nec-
essary to handle the different types 
of faults that threaten availability. 
Their combined representation in 
Figure 3 provides architects with 
comprehensive guidance to achieve 
highly available systems.

Performance

Manage resourcesControl resource demand

Reduce
overhead

Distributed webserver
caching to reduce

database read load 

Replicated stateless
webservers

Database partitioning to
distribute read load

Data model denormalized
to support single

query per use case  

Replicated database
across clusters

Data

Distribution

Deployment

Increase
resources

Increase
concurrency

Manage multiple
copies of data

FIGURE 2. Performance tactics for big data systems. The design decisions span the 

data, distribution, and deployment architectures.
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B ig data applications are 
pushing the limits of soft-
ware engineering on mul-

tiple horizons. Successful solutions 
span the design of the data, distribu-
tion, and deployment architectures. 
The body of software architecture 
knowledge must evolve to capture 
this advanced design knowledge for 
big data systems.

This article is a � rst step on this 
path. Our research is proceeding 
in two complementary directions. 
First, we’re expanding our collec-
tion of architecture tactics and en-
coding them in an environment that 
supports navigation between quality 
attributes and tactics, making cross-
cutting concerns for design choices 
explicit. Second, we’re linking tac-
tics to design solutions based on spe-
ci� c big data technologies, enabling 
architects to rapidly relate a particu-
lar technology’s capabilities to a spe-
ci� c set of tactics.
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