
78 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIET Y 074 0 -74 5 9 /15 / $ 31. 0 0 © 2 015 I E E E

FEATURE: BIG DATA SOFTWARE SYSTEMS

Distribution,
Data,
Deployment
Software Architecture
Convergence
in Big Data Systems

Ian Gorton and John Klein, Software Engineering Institute

// Big data systems present many challenges to

software architects. In particular, distributed

software architectures become tightly coupled

to data and deployment architectures. This

causes a consolidation of concerns; designs

must be harmonized across these three

architectures to satisfy quality requirements. //

THE EXPONENTIAL GROWTH of
data over the last decade has fueled a
new specialization for software tech-
nology: data-intensive, or big data,
software systems.1 Internet-born or-
ganizations such as Google and Am-
azon are on this revolution’s cutting
edge, collecting, managing, storing,
and analyzing some of the largest

data repositories ever constructed.
Their pioneering efforts,2,3 along
with those of numerous other big
data innovators, have provided a va-
riety of open source and commercial
data management technologies that
let any organization construct and
operate massively scalable, highly
available data repositories.

Addressing the challenges of soft-
ware for big data systems requires
careful design tradeoffs spanning
the distributed software, data, and
deployment architectures. It also
requires extending traditional soft-
ware architecture design knowledge
to account for the tight coupling
that exists in scalable systems. Scale
drives a consolidation of concerns,
so that distribution, data, and de-
ployment architectural qualities can
no longer be effectively considered
separately. To illustrate this, we’ll
use an example from our current re-
search in healthcare informatics.

The Challenges
of Big Data
Data-intensive systems have long
been built on SQL database tech-
nology, which relies primarily on
vertical scaling—faster processors
and bigger disks—as workload or
storage requirements increase. SQL
databases’ inherent vertical-scaling
limitations4 have led to new prod-
ucts that relax many core tenets of
relational databases. Strictly de� ned
normalized data models, strong data
consistency guarantees, and the
SQL standard have been replaced
by schemaless and intentionally de-
normalized data models, weak con-
sistency, and proprietary APIs that
expose the underlying data man-
agement mechanisms to the pro-
grammer. These NoSQL products4

typically are designed to scale hori-
zontally across clusters of low-cost,
moderate- performance servers. They
achieve high performance, elastic
storage capacity, and availability by
partitioning and replicating datasets
across a cluster. Prominent examples
of NoSQL databases include Cas-
sandra, Riak, and MongoDB (see the
sidebar “NoSQL Databases”).

Distributed databases have funda-

MAY/JUNE 2015 | IEEE SOFTWARE 79

NOSQL DATABASES
The rise of big data applications has caused a signi� cant � ux
in database technologies. While mature relational database
technologies continue to evolve, a spectrum of databases
called NoSQL has emerged over the past decade. The rela-
tional model imposes a strict schema, which inhibits data
evolution and causes dif� culties scaling across clusters. In
response, NoSQL databases have adopted simpler data mod-
els. Common features include schemaless records, allowing
data models to evolve dynamically, and horizontal scaling, by
sharding (partitioning and distributing) and replicating data
collections across large clusters. Figure A illustrates the four
most prominent data models, whose characteristics we sum-
marize here. More comprehensive information is at http://
nosql-database.org.

Document databases (see Figure A1) store collections of
objects, typically encoded using JSON (JavaScript Object
Notation) or XML. Documents have keys, and you can build
secondary indexes on nonkey � elds. Document formats are
self-describing; a collection might include documents with
different formats. Leading examples are MongoDB (www
.mongodb.org) and CouchDB (http://couchdb.apache.org).

Key–value databases (see Figure A2) implement a distrib-
uted hash map. Records can be accessed primarily through
key searches, and the value associated
with each key is treated as opaque, requir-
ing reader interpretation. This simple model
facilitates sharding and replication to cre-
ate highly scalable and available systems.
Examples are Riak (http://riak.basho.com)
and DynamoDB (http://aws.amazon.com/
dynamodb).

Column-oriented databases (see Figure
A3) extend the key–value model by organiz-
ing keyed records as a collection of columns,
where a column is a key–value pair. The key
becomes the column name; the value can
be an arbitrary data type such as a JSON
document or binary image. A collection can
contain records with different numbers of
columns. Examples are HBase (http://hbase
.apache.org) and Cassandra (https:/
/cassandra.apache.org).

Graph databases (see Figure A4) orga-
nize data in a highly connected structure—

typically, some form of directed graph. They can provide ex-
ceptional performance for problems involving graph traversals
and subgraph matching. Because ef� cient graph partition-
ing is an NP-hard problem, these databases tend to be less
concerned with horizontal scaling and commonly offer ACID
(atomicity, consistency, isolation, durability) transactions to
provide strong consistency. Examples include Neo4j (www
.neo4j.org) and GraphBase (http://graphbase.net).

NoSQL technologies have many implications for applica-
tion design. Because there’s no equivalent of SQL, each tech-
nology supports its own query mechanism. These mecha-
nisms typically make the application programmer responsible
for explicitly formulating query executions, rather than relying
on query planners that execute queries based on declara-
tive speci� cations. The programmer is also responsible for
combining results from different data collections. This lack of
the ability to perform JOINs forces extensive denormalization
of data models so that JOIN-style queries can be ef� ciently
executed by accessing a single data collection. When data-
bases are sharded and replicated, the programmer also must
manage consistency when concurrent updates occur and
must design applications to tolerate stale data due to latency
in update replication.

“is employed by”

“previously employed by”

“id”: “1”, “Name”: “John”, “Employer”: “SEI”
“id”: “2”, “Name”: “Ian”, “Employer”: “SEI”, “Previous”: “PNNL”
(1)

“key”: “1”, value{“Name”: “John”, “Employer”: “SEI”}
“key”: “2”, value{“Name”: “Ian”, “Employer”: “SEI”, “Previous”: “PNNL”}
(2)

“row”: “1”, “Employer” “Name”
 “SEI” “John”

“row”: “2”, “Employer” “Name” “Previous”
 “SEI” “Ian” “PNNL”

(3)

Node: Employee Node: Employer
“id”: “1”, “Name”: “John” “Name”: “SEI”
“id”: “2”, “Name”: “Ian”

 “Name”: “PNNL”

(4)

FIGURE A. Four major NoSQL data models. (1) A document store. (2) A key–

value store. (3) A column store. (4) A graph store.

80	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: BIG DATA SOFTWARE SYSTEMS

mental quality constraints, defined
by Eric Brewer’s CAP (consistency,
availability, partition tolerance) the-
orem.5 When a network partition
occurs (causing an arbitrary mes-
sage loss between cluster nodes), a
system must trade consistency (all
readers see the same data) against
availability (every request receives a
success or failure response). Daniel
Abadi’s PACELC provides a practi-
cal interpretation of this theorem.6 If
a partition (P) occurs, a system must
trade availability (A) against consis-
tency (C). Else (E), in the usual case
of no partition, a system must trade
latency (L) against consistency (C).

Additional design challenges for
scalable data-intensive systems stem
from the following three issues.

First, achieving high scalability and
availability leads to highly distrib-
uted systems. Distribution occurs in
all tiers, from webserver farms and
caches to back-end storage.

Second, the abstraction of a sin-
gle system image, with transactional
writes and consistent reads using
SQL-like query languages, is diffi-
cult to achieve at scale.7 Applications
must be aware of data replicas; han-
dle inconsistencies from conflicting
replica updates; and continue opera-
tion in spite of inevitable processor,
network, and software failures.

Third, each NoSQL product em-
bodies a specific set of quality attri-
bute tradeoffs, especially in terms of
performance, scalability, durability,
and consistency. Architects must dil-

igently evaluate candidate database
technologies and select databases
that can satisfy application require-
ments. This often leads to polyglot
persistence—using different data-
base technologies to store different
datasets in a single system, to meet
quality attribute requirements.8

Furthermore, as data volumes
grow to petascale and beyond, the
required hardware resources grow
from hundreds to tens of thousands
of servers. At this deployment scale,
many widely used software architec-
ture patterns are unsuitable. Archi-
tectural and algorithmic approaches
that are sensitive to hardware re-
source use can significantly reduce
overall costs. For more on this, see
the sidebar “Why Scale Matters.”

Big Data Application
Characteristics
Big data applications are rapidly
becoming pervasive across a range
of business domains. One example
domain in which big data analytics
looms prominently on the horizon
is aeronautics. Modern commer-
cial airliners produce approximately
0.5 Tbytes of operational data per
flight.9 This data can be used to di-
agnose faults in real time, optimize
fuel consumption, and predict main-
tenance needs. Airlines must build
scalable systems to capture, manage,
and analyze this data to improve re-
liability and reduce costs.

Another domain is healthcare.
Big data analytics in US healthcare
could save an estimated $450 bil-

lion.10 Analysis of petabytes of data
across patient populations, taken
from diverse sources such as insur-
ance payers, public health entities,
and clinical studies, can reduce costs
by improving patient outcomes. In
addition, operational efficiencies
can extract new insights for disease
treatment and prevention.

Across these and many other do-
mains, big data systems share four
requirements that drive the design of
suitable software solutions. Collec-
tively, these requirements represent
a significant departure from tradi-
tional business systems, which are
relatively well constrained in terms
of data growth, analytics, and scale.

First, from social media sites to
high-resolution sensor data collec-
tion in the power grid, big data sys-
tems must be able to sustain write-
heavy workloads.1 Because writes
are costlier than reads, systems can
use data sharding (partitioning and
distribution) to spread write opera-
tions across disks and can use rep-
lication to provide high availability.
Sharding and replication introduce
availability and consistency issues
that the systems must address.

The second requirement is to deal
with variable request loads. Business
and government systems experience
highly variable workloads for rea-
sons including product promotions,
emergencies, and statutory deadlines
such as tax submissions. To avoid the
costs of overprovisioning to handle
these occasional spikes, cloud plat-
forms are elastic, letting applications
add processing capacity to share
loads and release resources when
loads drop. Effectively exploiting this
deployment mechanism requires ar-
chitectures with application-specific
strategies to detect increased loads,
rapidly add new resources, and re-
lease them as necessary.

Big data systems must be able to sustain
write-heavy workloads.

	 MAY/JUNE 2015 | IEEE SOFTWARE � 81

software and data architectures to
partition simultaneously between
low-latency requests and requests
for advanced analytics on large
data collections, to continually en-
hance personalized recommenda-
tions’ quality.11

lytics on significant portions of
the data collection. This leads to
software and data architectures
explicitly structured to meet these
varying latency demands. Netflix’s
Recommendations Engine is a pio-
neering example of how to design

The third requirement is to sup-
port computation-intensive analyt-
ics. Most big data systems must
support diverse query workloads,
mixing requests that require rapid
responses with long-running re-
quests that perform complex ana-

WHY SCALE MATTERS
Scale has many implications for software architecture; here
we look at several.

The first implication focuses on how scale changes our
designs’ problem space. Big data systems are inherently
distributed. Their architectures must explicitly handle partial
failures, communication latencies, concurrency, consistency,
and replication. As systems grow to thousands of process-
ing nodes and disks and become geographically distributed,
these issues are exacerbated as the probability of a hardware
failure increases. One study found that 8 percent of servers in
a typical datacenter experience a hardware problem annually,
with disk failure most common.1 Applications must also deal
with unpredictable communication latencies and network
connection failures. Scalable applications must treat failures
as common events that are handled gracefully to ensure un-
interrupted operation.

To deal with these issues, resilient architectures must ful-
fill two requirements. First, they must replicate data to ensure
availability in the case of a disk failure or network partition.
Replicas must be kept strictly or eventually consistent, using
either master–slave or multimaster protocols. The latter need
mechanisms such as Lamport clocks2 to resolve inconsisten-
cies due to concurrent writes.

Second, architecture components must be stateless,
replicated, and tolerant of failures of dependent services. For
example, by using the Circuit Breaker pattern3 and returning
cached or default results whenever failures are detected, an
architecture limits failures and allows time for recovery.

Another implication is economics based. At very large
scales, small optimizations in resource use can lead to very
large cost reductions in absolute terms. Big data systems can
use many thousands of servers and disks. Whether these are
capital purchases or rented from a service provider, they remain
a major cost and hence a target for reduction. Elasticity can re-
duce resource use by dynamically deploying new servers as the
load increases and releasing them as the load decreases. This
requires servers that boot and initialize quickly and application-
specific strategies to avoid premature resource release.

Other strategies target the development tool chain to
maintain developer productivity while decreasing resource
use. For example, Facebook built HipHop, a PHP-to-C++
transformation engine that reduced the CPU load for serving
Web pages by 50 percent.4 At the scale of Facebook’s deploy-
ment, this creates significant operational-cost savings. Other
targets for reduction are software license costs, which can be
prohibitive at scale. This has led some organizations to cre-
ate custom database and middleware technologies, many of
which have been released as open source. Leading examples
of technologies for big data systems are from Netflix (http://
netflix.github.io) and LinkedIn (http://linkedin.github.io).

Other implications of scale include testing and fault diag-
nosis. Owing to these systems’ deployment footprints and the
massive datasets they manage, comprehensively validating
code before deployment to production can be impossible.
Canary testing and Netflix’s Simian Army are examples of the
state of the art in testing at scale.5 When problems occur in
production, advanced monitoring and logging are needed for
rapid diagnosis. In large-scale systems, log collection and
analysis itself quickly becomes a big data problem. Solutions
must include a low-overhead, scalable logging infrastructure
such as Blitz4j.6

References
	 1.	 K.V. Vishwanath and N. Nagappan, “Characterizing Cloud Comput-

ing Hardware Reliability,” Proc. 1st ACM Symp. Cloud Computing
(SoCC 10), 2010, pp. 193–204.

	 2.	 L. Lamport, “Time, Clocks, and the Ordering of Events in a Distrib-
uted System,” Comm. ACM, vol. 21, no. 7, 1978, pp. 558–565.

	 3.	 M.T. Nygard, Release It! Design and Deploy Production-Ready
Software, Pragmatic Bookshelf, 2007.

	 4.	 H. Zhao, “HipHop for PHP: Move Fast,” blog, 2 Feb. 2010; https://
developers.facebook.com/blog/post/2010/02/02/hiphop-for-php
--move-fast.

	 5.	 B. Schmaus, “Deploying the Netflix API,” blog, 14 Aug. 2013; http://
techblog.netflix.com/2013/08/deploying-netflix-api.html.

	 6.	 K. Ranganathan, “Announcing Blitz4j—a Scalable Logging Frame-
work,” blog, 20 Nov. 2012; http://techblog.netflix.com/search/label
/appender.

82 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: BIG DATA SOFTWARE SYSTEMS

The fourth requirement is high
availability. With thousands of nodes
in a horizontally scaled deployment,
hardware and network failures inev-
itably occur. So, distributed software
and data architectures must be resil-
ient. Common approaches for high
availability include replicating data
across geographical regions,12 state-
less services, and application-speci� c
mechanisms to provide degraded
service in the face of failures.

These requirements’ solutions
crosscut the distribution, data, and
deployment architectures. For exam-
ple, elasticity requires

• processing capacity that can be
acquired from the execution
platform on demand,

• policies and mechanisms to
appropriately start and stop
services as the application load
varies, and

• a database architecture that can

reliably satisfy queries under an
increased load.

This coupling of architectures to sat-
isfy a particular quality attribute is
common in big data applications. It
can be regarded as a tight coupling
of the process, logical, and physical
views in the 4 + 1 view model.13

An Example of the
Consolidation of
Concerns
At the Software Engineering Insti-
tute, we’re helping to evolve a sys-
tem to aggregate data from multiple
petascale medical-record databases
for clinical applications. To attain
high scalability and availability at
low cost, we’re investigating using
NoSQL databases for this aggrega-
tion. The design uses geographically
distributed datacenters to increase
availability and reduce latency for
globally distributed users.

Consider the consistency require-
ments for two categories of data in
this system: patient demographics
(for example, name and insurance
provider) and diagnostic-test results
(for example, blood or imaging test
results). Patient demographic records
are updated infrequently. These up-
dates must be immediately visible
at the local site where the data was
modi� ed (“read your writes”), but a
delay is acceptable before the update
is visible at other sites (“eventual
replica consistency”). In contrast,
diagnostic- test results are updated
more frequently, and changes must
be immediately visible everywhere
to support telemedicine and re-
mote consultations with specialists
(“strong replica consistency”).

We’re prototyping solutions using
several NoSQL databases. We focus
here on one prototype using Mon-
goDB to illustrate the architecture
drivers and design decisions. The
design segments data across three
shards and replicates data across
two datacenters (see Figure 1).

MongoDB enforces a master–
slave architecture; every data collec-
tion has a master replica that serves
all write requests and propagates
changes to other replicas. Clients
can read from any replica, opening
an inconsistency window between
writes to the master and reads from
other replicas.

MongoDB allows tradeoffs be-
tween consistency and latency
through parameter options on each
write and read. A write can be un-
acknowledged (no assurance of du-
rability, low latency), durable on
the master replica, or durable on
the master and one or more replicas
(consistent, high latency). A read can
prefer the closest replica (potentially
inconsistent, low latency), be re-
stricted to the master replica (consis-

Web or application
servers

Web or application
servers

Web or application
servers

Global
network

Data replication

Patient data

Test results data

Datacenter 1

Shard
2

Shard
3

Shard
1

Shard
2

Shard
3

Shard
1

Patient data

Test results data

Datacenter 2

Shard
2

Shard
3

Shard
1

Shard
2

Shard
3

Shard
1

FIGURE 1. A MongoDB-based healthcare data management prototype.

Geographically distributed datacenters increase availability and reduce latency for

globally distributed users.

MAY/JUNE 2015 | IEEE SOFTWARE 83

tent, partition intolerant), or require
most replicas to agree on the data
value to be read (consistent, parti-
tion tolerant).

The application developer must
choose appropriate write and read
options to achieve the desired per-
formance, consistency, and durabil-
ity and must handle partition errors
to achieve the desired availability. In
our example, patient demographic
data writes must be durable on the
primary replica, but reads can be di-
rected to the closest replica for low
latency. This makes patient demo-
graphic reads insensitive to network
partitions at the cost of potentially
inconsistent responses.

In contrast, writes for diagnostic-
test results must be durable on all
replicas. Reads can be performed
from the closest replica because the
write ensures that all replicas are
consistent. This means writes must
handle failures caused by network
partitions, whereas reads are insensi-
tive to partitions.

Today, our healthcare informatics
application runs atop an SQL data-
base, which hides the physical data
model and deployment topology
from developers. SQL databases pro-
vide a single-system-image abstrac-
tion, which separates concerns be-
tween the application and database
by hiding the details of data distri-
bution across processors, storage,
and networks behind a transactional
read/write interface.14 In shifting to
a NoSQL environment, an applica-
tion must directly handle the faults
that will depend on the physical
data distribution (sharding and rep-
lication) and the number of replica
sites and servers. These low-level in-
frastructure concerns, traditionally
hidden under the database interface,
must now be explicitly handled in
application logic.

Systematic Design
Using Tactics
In designing an architecture to sat-
isfy quality drivers such as those in
this healthcare example, one proven
approach is to systematically select
and apply a sequence of architec-
ture tactics.15 Tactics are elemental
design decisions, embodying archi-
tectural knowledge of how to satisfy
one design concern of a quality attri-
bute. Tactic catalogs enable reuse of
this knowledge. However, existing
catalogs don’t contain tactics spe-
ci� c to big data systems.

Figures 2 and 3 extend the basic
performance and availability tac-
tics15 to big data systems. Figure 4
de� nes scalability tactics, focusing
on the design concern of increased
workloads. Each � gure shows
how the design decisions span the
data, distribution, and deployment
architectures.

For example, achieving availabil-

ity requires masking faults that inev-
itably occur in a distributed system.
At the data level, replicating data
items is an essential step to handle
network partitions. When an ap-
plication can’t access any database
partition, another tactic to enhance
availability is to design a data model
that can return meaningful default
values without accessing the data.
At the distributed-software layer,
caching is a tactic to achieve the
default- values tactic de� ned in the
data model. At the deployment layer,
an availability tactic is to geographi-
cally replicate the data and distrib-
uted application software layers to
protect against power and network
outages. Each of these tactics is nec-
essary to handle the different types
of faults that threaten availability.
Their combined representation in
Figure 3 provides architects with
comprehensive guidance to achieve
highly available systems.

Performance

Manage resourcesControl resource demand

Reduce
overhead

Distributed webserver
caching to reduce

database read load

Replicated stateless
webservers

Database partitioning to
distribute read load

Data model denormalized
to support single

query per use case

Replicated database
across clusters

Data

Distribution

Deployment

Increase
resources

Increase
concurrency

Manage multiple
copies of data

FIGURE 2. Performance tactics for big data systems. The design decisions span the

data, distribution, and deployment architectures.

84 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FEATURE: BIG DATA SOFTWARE SYSTEMS

B ig data applications are
pushing the limits of soft-
ware engineering on mul-

tiple horizons. Successful solutions
span the design of the data, distribu-
tion, and deployment architectures.
The body of software architecture
knowledge must evolve to capture
this advanced design knowledge for
big data systems.

This article is a � rst step on this
path. Our research is proceeding
in two complementary directions.
First, we’re expanding our collec-
tion of architecture tactics and en-
coding them in an environment that
supports navigation between quality
attributes and tactics, making cross-
cutting concerns for design choices
explicit. Second, we’re linking tac-
tics to design solutions based on spe-
ci� c big data technologies, enabling
architects to rapidly relate a particu-
lar technology’s capabilities to a spe-
ci� c set of tactics.

Acknowledgments
This material is based on research
 funded and supported by the US Depart-
ment of Defense under contract FA8721-
05-C-0003 with Carnegie Mellon Uni-
versity for the operation of the Software
Engineering Institute, a federally funded
research and development center. Refer-
ences herein to any speci� c commercial
product, process, or service by trade
name, trademark, manufacturer, or oth-
erwise, doesn’t necessarily constitute or
imply its endorsement, recommendation,
or favoring by Carnegie Mellon Univer-
sity or its Software Engineering Insti-
tute. This material has been approved
for public release and unlimited distri-
bution. DM-0000810.

References
 1. D. Agrawal, S. Das, and A. El Abbadi,

“Big Data and Cloud Computing: Current
State and Future Opportunities,” Proc.
14th Int’l Conf. Extending Database
Technology (EDBT/ICDT 11), 2011, pp.
530–533.

Availability

Recover from faultsDetect faults

Health monitoring

Handle
write

inconsistencies

Balance
data

distribution

Data replicas
reside in geographically
distributed datacenters

Data model supports
replication to eliminate
single point of failure

Model for
default

data values

Handle database failures
through caching or

employing default responses

Data

Distribution

Deployment

Mask faults

Scalability

Respond to decreased loadRespond to increased load

Automatically increase capacity Manually increase capacity

Cluster management
platform supports

dynamic provisioning

Server resources are
provisioned on demand

as load increases

Cluster management
platform supports dynamic
decommissioning of nodes

Data distribution mechanism
supports distributing data

over new nodes

Server resources
are released as
load decreases

Data

Distribution

Deployment

Automatically release capacity

FIGURE 3. Availability tactics for big data systems. The tactics’ combined

representation provides architects with comprehensive guidance to achieve highly

available systems.

FIGURE 4. Scalability tactics for big data systems. These tactics focus on the design

concern of increased workloads.

MAY/JUNE 2015 | IEEE SOFTWARE 85

 2. W. Vogels, “Amazon DynamoDB—a Fast
and Scalable NoSQL Database Service
Designed for Internet Scale Applications,”
blog, 18 Jan. 2012; www.allthingsdistri
buted.com/2012/01/amazon-dynamodb
.html.

 3. F. Chang et al., “Bigtable: A Distributed
Storage System for Structured Data,” ACM
Trans. Computing Systems, vol. 26, no. 2,
2008, article 4.

 4. P.J. Sadalage and M. Fowler, NoSQL Dis-
tilled, Addison-Wesley Professional, 2012.

 5. E. Brewer, “CAP Twelve Years Later: How
the “Rules” Have Changed,” Computer,
vol. 45, no. 2, 2012, pp. 23–29.

 6. D.J. Abadi, “Consistency Tradeoffs in
Modern Distributed Database System
Design: CAP Is Only Part of the Story,”
Computer, vol. 45, no. 2, 2012, pp. 37–42.

 7. J. Shute et al., “F1: A Distributed SQL Da-
tabase That Scales,” Proc. VLDB Endow-
ment, vol. 6, no. 11, 2013, pp. 1068–1079.

 8. M. Fowler, “PolyglotPersistence,” blog, 16
Nov. 2011; www.martinfowler.com/bliki
/PolyglotPersistence.html.

 9. M. Finnegan, “Boeing 787s to Create Half
a Terabyte of Data per Flight, Says Virgin
Atlantic,” Computerworld UK, 6 Mar.
2013; www.computerworlduk.com/news
/infrastructure/3433595/boeing-787s-to
-create-half-a-terabyte-of-data-per-� ight
-says-virgin-atlantic.

 10. B. Kayyali, D. Knott, and S. Van Kuiken,
“The ‘Big Data’ Revolution in Healthcare:
Accelerating Value and Innovation,” Mc-
Kinsey & Co., 2013; www.mckinsey.com
/insights/health_systems_and_services/the
_big data_revolution_in_us_health_care.

 11. X. Amatriain and J. Basilico, “System
Architectures for Personalization and Rec-
ommendation,” blog, 27 Mar. 2013; http://
techblog.net� ix.com/2013/03/system
-architectures-for.html.

 12. M. Armbrust, “A View of Cloud Comput-
ing,” Comm. ACM, vol. 53, no. 4, 2010,
pp. 50–58.

 13. P.B. Kruchten, “The 4 + 1 View Model of
Architecture,” IEEE Software, vol. 12, no.
6, 1995, pp. 42–50.

 14. J. Gray and A. Reuter, Transaction
Processing: Concepts and Techniques,
Morgan Kaufmann, 1993.

 15. L. Bass, P. Clements, and R. Kazman,
Software Architecture in Practice, 3rd ed.,
Addison-Wesley, 2012.

Take the CS Library
wherever you go!

IEEE Computer Society magazines and Transactions are now
available to subscribers in the portable ePub format.

Just download the articles from the IEEE Computer Society Digital
Library, and you can read them on any device that supports ePub. For more
information, including a list of compatible devices, visit

www.computer.org/epub

IAN GORTON is a senior member of the technical staff on the
Carnegie Mellon Software Engineering Institute’s Architecture
Practices team, where he investigates issues related to software
architecture at scale. This includes designing large-scale data
management and analytics systems and understanding the
inherent connections and tensions between software, data, and
deployment architectures. Gorton received a PhD in computer
science from Shef� eld Hallam University. He’s a senior member of
the IEEE Computer Society. Contact him at igorton@sei.cmu.edu.

JOHN KLEIN is a senior member of the technical staff at the
Carnegie Mellon Software Engineering Institute, where he does
consulting and research on scalable software systems as a
member of the Architecture Practices team. Klein received an
ME in electrical engineering from Northeastern University. He’s
the secretary of the International Federation for Information
Processing Working Group 2.10 on Software Architecture, a
member of the IEEE Computer Society, and a senior member of
ACM. Contact him at jklein@sei.cmu.edu.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

