
0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E MARCH/APRIL 2016 | IEEE SOFTWARE 93

Editor: Christof Ebert
Vector Consulting Services
christof.ebert@vector.com

SOFTWARE
TECHNOLOGY

Component Stacks for
Enterprise Applications
Panos Louridas

Mobile enterprise application development is transitioning from
SQL-based traditional servers toward JavaScript for server and
client. MEAN as a component stack is replacing LAMP, with a
growing number of adopters and Web applications. As the world
turns faster, we’ll see increasingly � exible and evolving component
stacks. In this instalment of the Software Technology department,
Panos Louridas gives an introduction to LAMP and MEAN and
shows how to practically use MEAN. I look forward to hearing from
both readers and prospective column authors. —Christof Ebert

WE INTERACT WITH Web applications
to carry out most of our everyday tasks.
From paying taxes to booking vaca-
tions, our basic means of interaction is
a Web browser that communicates with
an application running somewhere on a
server. Consequently, Web development
is a primary source of employment for
programmers. Programming languages
such as Ruby, PHP, and JavaScript,
which are used primarily for Web devel-
opment, feature prominently in the top
10 popular languages in yearly rankings,
such as those issued by IEEE Spectrum.1

Until relatively recently, the tools used
to develop Web applications followed a
well-established architecture called the
LAMP stack. Recently, the MEAN stack
has taken the Web developer world by
storm and is replacing LAMP.

LAMP
The LAMP stack has been around for
many years and is the established way to

develop Web applications. Originally it
stood for “Linux, Apache, MySQL, and
PHP,” but its meaning is now broader. Ba-
sically, developers build Web applications
using speci� c software components at dif-
ferent levels. At the base level, the OS of
choice is Linux. With the OS in place, a
Web application needs a webserver. Tra-
ditionally, this has been the Apache web-
server. The data the Web application uses
is stored in a relational database; the most
popular one is MySQL. The application
itself is written in a programming lan-
guage offering good support for Web pro-
gramming; this was initially PHP.

Things have changed considerably
over time. PHP is popular for Web devel-
opment, but many programmers prefer
Java or Python, which are still compat-
ible with the LAMP stack. And it would
be ludicrous to say that LAMP doesn’t
cover Ruby on Rails. In the same vein,
MySQL remains the most popular data-
base, but PostgreSQL powers many Web

94 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

applications. And although nobody
can doubt the Apache webserver’s
importance, the nginx webserver’s
popularity has been increasing. With
the LAMP acronym blurred, we had
better � nd a better way to identify
what LAMP development is.

De� ning LAMP Development
LAMP has four main components.
First, the OS is open source—in
most cases, a Linux distribution,
although nobody would say that a
Web application running on Free-
BSD is automatically denied the
LAMP moniker.

Second, the Web application
is based on user interaction with
HTML pages that, after being pre-
pared, are sent by a webserver in re-
sponse to HTTP protocol requests.

Third, the application needs to
keep and process some data. The
LAMP stack assumes that the data
can and should be described using
the relational-database model. The
actual database of choice isn’t of

much consequence; what’s impor-
tant is that it should be relational.

Fourth, the application must pre-
sent views that depend on the user’s
input. That means that not all the
HTML pages the webserver returns
can be static. Most of the HTML
pages the user sees are prepared dy-
namically, on the basis of the user’s
input. The chosen programming lan-
guage—for example, PHP, Python,
Ruby, Java, or Perl—takes that input
and presents a new HTML page on
the � y that the webserver sends back
to the user.

Deviating from Tradition
Traditionally, a MEAP (mobile en-
terprise application platform) appli-
cation works with the cycle of HTTP
request, process, and HTTP re-
sponse. That is, the user, through the
browser, interacts with an HTML
page and issues a request to the
server. The server processes the re-
quest, prepares a new HTML page,
and sends it to the user.

Modern Web applications might
deviate somewhat from that cycle. The
webpages might include parts that
are updated dynamically, through
asynchronous JavaScript (Ajax) calls,
without requiring the user to reload
or navigate to a new page. However,
the basic vehicle of interaction in the
LAMP stack is through HTTP re-
quest and response pairs. This prin-
ciple is relinquished in MEAN, and
a new Web-programming paradigm
emerges.

MEAN
 Like LAMP, MEAN is an acronym
but comprises more than the acro-
nym components. M is for Mon-
goDB, a popular NoSQL database
that powers MEAN applications.
E is for Express, a Web application
framework built on Node.js. A is for
AngularJS, a JavaScript framework
for endowing Web applications with
modern interactive features. N is for
Node.js, the basic computational en-
gine for MEAN applications. The
MEAN stack is a server-side Java-
Script execution environment, letting
developers write generic JavaScript
applications that are executed by
Node.js, and not just traditional Web
JavaScript code that executes in a
browser. (For a brief look at the rise
of MEAN, see the related sidebar.)

Node.js is pretty low-level; al-
though you can write webserver ap-
plications directly on it, it’s much
better to rely on frameworks that let
you access higher-level abstractions.
Express is such a framework, letting
you focus more on the logic of your
applications than on the nitty-gritty.

MEAN asks developers to stop
relying on relational databases and
make the jump to the NoSQL world.
That doesn’t mean you can’t use re-
lational databases alongside the
MEAN stack. NoSQL databases,

THE RISE OF MEAN

In a way, MEAN (for an explanation of this acronym, see the main article) is
an offshoot of JavaScript’s popularity as a general-purpose programming lan-
guage, instead of its more traditional role as a language embedded in webpag-
es. This became possible with Node.js, a framework for building server-side
JavaScript applications. Programmers can now use JavaScript for the same
tasks for which they’ve been using Java, Python, or Ruby on the server.

That’s a challenge and an opportunity. JavaScript uses a speci� c program-
ming model based on events. To make programs that perform well, program-
mers must be careful to use asynchronous programming patterns, which often
requires a change in thinking. At the same time, Web developers already know
JavaScript because they use it to add interactive components on their webpag-
es. Instead of having to work with two programming languages in a single Web
application—for example, Python on the server-side components and JavaScript
on the front-end, browser-side components—developers can program every-
thing in the same language.

SOFTWARE TECHNOLOGY

MARCH/APRIL 2016 | IEEE SOFTWARE 95

though, are a better � t, especially
MongoDB, which uses JavaScript
as its primary interface. In this way
you can use the same language for
front-end interaction programming,
server-side logic processing, and da-
tabase access and manipulation.

MongoDB organizes data into
collections instead of tables. A col-
lection contains documents, which
are key–value pairs. A value can be
a key–value pair itself, so that docu-
ments can represent complex nested
structures. Documents are essen-
tially JSON (JavaScript Object Nota-
tion) objects, a JavaScript subset that
can describe nested data structures.
MongoDB converts the JSON objects
to BSON (Binary JSON) format and
places them in persistent storage.

MongoDB collections are sche-
maless; that is, the documents don’t
adhere to a prede� ned schema (as do
rows in an SQL table). A collection
might contain objects with different
structures. That makes MongoDB
a good choice for storing data that
might have a changing structure and
that can’t be converted to standard
relational formats.

The schemaless nature of Mon-
goDB databases has several conse-
quences. MongoDB collections tend
to eat up a lot of space. In a typical
relational database, the data type
de� nitions are stored only once in
the database dictionary. In a sche-
maless database, you must specify
the structure of each document in
the collection, even if all documents
have a similar structure. SQL data-
bases have bene� tted from years of
research and practice in query opti-
mization and execution, nothing of
which transfers to schemaless data-
bases. In practice, most queries that
are practical in schemaless databases
are simple key–value lookups. If you
want to run queries that combine

different documents or calculate ag-
gregate values, you might � nd that
performance grinds down to a halt.
Moreover, MongoDB doesn’t of-
fer transactions like the traditional
transactional models of relational
databases—although other NoSQL
databases offer more transaction
support.

At the same time, if relatively
simple queries will meet your data
needs, MongoDB can be blazingly
fast. It can distribute data among
different MongoDB instances (this
process is called sharding). This
makes it well suited for very big
amounts of data (“mongo” comes
from “humongous”) that can be
stored in a distributed fashion.

AngularJS is a fully � edged devel-
opment framework for webpage ap-
plications, structuring them along
the Model-View-Controller design
pattern. With AngularJS, develop-
ers can describe how data from the
server links to events and GUI com-
ponents on the webpage and how
events and input from the user alter
the GUI components’ state. Angu-
larJS extends HTML with a template

syntax that allows easy manipulation
of page elements and lets develop-
ers specify how, in response to user
events, data can travel to and from
the server asynchronously via Ajax.

The culmination of this program-
ming model is single-page applica-
tions (SPAs). In SPAs, all the Web ap-

plication (the HTML and templates
for everything the user will see and all
associated JavaScript) is downloaded
at once. Then, the pages the user sees
change continuously depending on
the user events, without any page re-
loading from the server. That entails
a signi� cant departure from MEAP
applications’ HTTP request–response
sequence. A MEAN application can
issue a single HTTP request and
get a bundle of HTML, templates,
and JavaScript in a single HTTP re-
sponse. Then, all the other data is
exchanged through REST (Repre-
sentational State Transfer) calls from
the browser to the server. The REST
calls typically pass data from the
browser to function callbacks run-
ning in Node.js and return the re-
sults. Data and results are passed as
a JSON object payload in the REST
calls and responses.

A good way to think about this
design is that the front end that the
browser gets is an independent client
application, which stands on its own
and interacts with a Web service ap-
plication in the server. The client ap-
plication interacts with the server

application with an agreed REST
API. The client application handles
user interaction; the server applica-
tion handles the business logic.

AngularJS isn’t the only choice.
The Ember.js development frame-
work has goals similar to those of
AngularJS and a strong, devoted

So much LAMP code is in
production that LAMP won’t
go away easily, if at all.

SOFTWARE TECHNOLOGY

96 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

community. It provides different
programming abstractions, but the
basic idea of having the front end as
a client application communicating
with a REST API in the back end re-
mains the same.

For an example of the practical

use of MEAN, see the sidebar, “A
MEAN Example.”

The Dividing Line
Although MEAN and LAMP em-
ploy different technologies and tools,
the line dividing them often isn’t so

clear-cut that MEAN applications
can’t have features from LAMP ap-
plications, or vice versa.

The platonic ideal of a MEAN ap-
plication would have the front end
served in one go at the start, but in
reality that might not be practical.
You might need to strike a balance in
which some parts of the application
are served in stages through successive
HTTP requests and responses. Also,
you can’t rely on the client side to en-
force access controls: with a modicum
of JavaScript, someone could bypass
all security features of such an appli-
cation. The controls must be enforced
on the server side as well.

It’s conceptually appealing to reg-
iment development stacks into those
that can rely on NoSQL databases
versus those that require SQL data-
bases. However, you might encoun-
ter situations in which an otherwise
MEAN application needs an SQL
database or in which a LAMP ap-
plication would be much better off
with a NoSQL database.

Table 1 compares LAMP and
MEAN.

Now, Where?
Where should you go now—down
the well-trodden path of LAMP or
the trail blazed by MEAN?

This question has no single an-
swer. If a development team has
achieved excellence with LAMP,
there’s no reason to dump it and
jump on the MEAN train just to be
in fashion. So much LAMP code is
in production that LAMP won’t go
away easily, if at all. MEAN moves
fast—perhaps too fast for some
people’s taste. For example, an an-
nouncement from AngularJS’s devel-
opers that AngularJS 2.x would have
breaking changes from AngularJS
1.x raised a wave of protest. At other
times, things that developers take

A MEAN EXAMPLE

Consider an online catalog that presents various services (such as cloud stor-
age or online applications available as software as a service) from third-party
providers. For each service, the catalog includes basic information and ratings
on a set of criteria. The criteria might differ depending on the nature of the
service, and it’s not clear that a single schema could � t them all. The nature of
the service description might also differ among services.

MongoDB is a good � t for this catalog. Most queries are simple reads and
some updates; no queries contain complex calculations. You only need to re-
cord the information and the criteria ratings for each service, which you can
do with JSON (JavaScript Object Notation) documents.

All of the catalog’s functionality is through a REST (Representational State
Transfer) API, through which JSON documents are updated, written, or read.
That API de� nes a set of actions available through speci� c URLs (for exam-
ple, /service/amazing_cloud_storage/15/put). The actions are implemented
through Express routing rules calling server-side JavaScript; Node.js is the
underlying engine.

The user’s browser interacts with the REST API, sending and receiving
JSON documents. The browser renders the documents as HTML, using a Mod-
el-View-Controller framework such as AngularJS. Figure A shows the setup.

JavaScript Web
application program

Apache
webserver

REST API or
JSON data

MongoDB commands or
data

System calls

REST API or
JSON data

HTTP request or
response

Node.js

MongoDB

Linux

Web browser
2

1

FIGURE A. A typical MEAN setup, for an online catalog that presents

various services from third-party providers. REST stands for Representational

State Transfer; JSON stands for JavaScript Object Notation.

SOFTWARE TECHNOLOGY

	 MARCH/APRIL 2016 | IEEE SOFTWARE � 97

for granted in LAMP, such as well-
established interfaces for talking to
SQL databases, don’t yet exist in
MEAN—and the argument that you
don’t need SQL in MEAN doesn’t
hold much water. That said, once
you’ve seen what you can do with
AngularJS or Ember.js, you won’t
likely want to go back.

As I indicated, though, there’s no
reason why the twain shall not meet.
You can combine very well an SQL
database and a Python development
framework, or Ruby on Rails, with
AngularJS in the front end. Or you
can use both an SQL and a NoSQL

database in the same application, if
that suits your needs.

Developers are in a lucky situ-
ation in which they’re, in a sense,
spoiled with choices. The best an-
swer to my question is to use your
best judgment and pick and choose
as you need.

N either LAMP nor MEAN
will be the last word on
developing Web applica-

tions. New ideas and approaches
will emerge to respond to emerging
needs. For example, the Internet of

Things will require rethinking how
we develop our applications to make
them fit in all sorts of small, embed-
ded devices. The emergence of dis-
tributed applications built from au-
tonomous nodes needs technologies
appropriate for building networked
services instead of shoehorning ex-
isting tools—the reception of the Go
programming language might hint
at that. Moreover, future applica-
tions will be built from many inde-
pendent components. Those compo-
nents won’t all need to be deployed
and configured in tandem, nor will
they need to be updated together.

TA
B

L
E

 1 LAMP vs. MEAN.*

LAMP MEAN

Maturity High Still bleeding-edge in some parts

Adoption High High in new projects

Community Very large Large, very enthusiastic

Ecosystem Huge (many programming languages, frameworks, and
databases)

Homogeneous (one programming language, few
frameworks and databases)

Availability Both open- and closed-source solutions Open source solutions

Hip factor Low (the traditional way to do things) High (the new way to do things)

Programming
paradigm

Well established Requires adopting new thinking (asynchronous,
event-based programming)

Support Good, from both established commercial vendors and
online communities

Commercial support mostly through startups. Good
online communities fill the gap.

Performance Depends on the framework. Java-based frameworks
are usually faster than those based on scripted
languages. LAMP has plenty of experience with robust,
performing enterprise applications.

Node.js is very fast. However, it’s not clear whether
this is enough to support high-performance
enterprise applications.

Developer productivity Depends on the framework. For instance, Ruby on Rails
has been developed with that in mind.

Can be high if the developers are well versed in the
JavaScript mind-set. Otherwise, it can be poor.

Security Depends on the framework. Thanks to accumulated
experience, a set of secure practices exists.

Must be considered on both the server and client
sides. Users can always subvert the client-side
JavaScript.

Usefulness for
embedded systems and
the Internet of Things

Depends on the framework. A full MEAN stack isn’t
designed to run on an embedded device, so developers
must use MEAN technologies with small footprints.

Although it’s too early to say with certainty, Node
.js seems to be a good fit for embedded devices
running Linux.

* For an explanation of these acronyms, see the main article.

SOFTWARE TECHNOLOGY

98 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

Frameworks will be judged by their
� exibility and their facilities for han-
dling component modules.

For links to more information
on LAMP and MEAN, see the “For
More Information” sidebar.

Reference
 1. S. Cass, “The 2015 Top Ten Program-

ming Languages,” IEEE Spectrum,

20 July 2015; http://spectrum.ieee

.org/computing/software/the-2015

-top-ten-programming-languages.

PANOS LOURIDAS is an associate professor at

the Athens University of Economics and Business

and a consultant at the Greek Research and

Technology Network. Contact him at louridas@

aueb.gr.

FOR MORE INFORMATION

If you’re interested in LAMP frameworks, check out these sites:

• The Java Spring Framework, http://projects.spring.io/spring-framework;
• Ruby on Rails, http://rubyonrails.org;
• Python Django, www.djangoproject.com; and
• PHP, https://secure.php.net.

To explore MEAN, start with these sites:

• Node.jsQ, https://nodejs.org/en;
• Meteor, www.meteor.com;
• Express, http://expressjs.com;
• AngularJS, https://angularjs.org; and
• Ember, http://emberjs.com.

Security is important in Web application development. A good starting point
is the OWASP (Open Web Application Security Project) Top 10 Project (www
.owasp.org/index.php/OWASP_Top_Ten_Project), which presents the most
critical Web application � aws.

Ad Index Here
Dennis, Marian out
sick Tuesday. I’ll
check back with her
Wednesday.

Advertising Personnel

Debbie Sims: Advertising Coordinator
Email: dsims@computer.org
Phone: +1 714 816 2138 | Fax: +1 714 821 4010

Chris Ruoff: Senior Sales Manager
Email: cruoff@computer.org
Phone: +1 714 816 2168 | Fax: +1 714 821 4010

Advertising Sales Representatives (display)

Central, Northwest, Southeast, Far East:
Eric Kincaid
Email: e.kincaid@computer.org
Phone: +1 214 673 3742
Fax: +1 888 886 8599

Northeast, Midwest, Europe, Middle East:
David Schissler
Email: d.schissler@computer.org
Phone: +1 508 394 4026
Fax: +1 508 394 1707

Southwest, California:
Mike Hughes
Email: mikehughes@computer.org
Phone: +1 805 529 6790

Advertising Sales Representative (Classifieds & Jobs Board)

Heather Buonadies
Email: h.buonadies@computer.org
Phone: +1 201 887 1703

ADVERTISER INFORMATION • MARCH/APRIL 2016

