Systems Programming

C on Google Cloud     |     CS 355 - Spring 2020

Catalog description:

Prerequisites: C- or better in both CS 253 and 254. Design and development of systems software. Topics include machine and operating system organization, hardware/software interfaces, hardware-specific constraints on software applications, and using application programming interfaces and system libraries for the design and development of systems applications.

Logistics

Instructor Dr. Stan Kurkovsky, Professor of Computer Science
Office MS 303-06
Phone (860) 832-2720
E-mail kurkovsky@ccsu.edu
Office hours MW 12:00 - 1:30 pm, TR 1:30 - 2:30 pm, or by appointment
Class meetings TR 12:15 - 1:30 pm @ MS 204

Textbook and other things you will need

  • The C Programming Language by Brian Kernighan and Dennis Ritchie, Second Edition. Prentice Hall, 1998, ISBN 0131103628.
  • Understanding Unix/Linux Programming: A Guide to Theory and Practice, by Bruce Molay. Prentice Hall, 2003, ISBN 0130083968. Companion web site.
  • An interactive C programming tutorial
  • A Google Cloud account to access the Cloud Shell
  • Access to a laptop computer that can be brought to class on a regular basis
  • Instructor's web site available at http://www.cs.ccsu.edu/~stan/
  • Course project document
  • In-class code examples on GitHub

Course learning outcomes

Program educational objectives and student outcomes are supported by the following course learning outcomes achieved by students upon a successful completion of this course:

  1. Understand the role of systems programming in bridging the hardware/software interface;
  2. Apply appropriate knowledge of computing to solve systems programming problems (SO-1);
  3. Design and implement an integrated hardware/software system that meets a well-defined set of specifications;
  4. Function effectively as a team member working on a software development project (SO-4);
  5. Produce and present software projects specifications, design, and other software project artefacts (SO-3).

Tentative schedule

Reference:
KR - Kernighan and Ritchie, The C Programming Language
M - Molay, Understanding Unix/Linux Programming: A Guide to Theory and Practice

Week 1: January 21 - 24

  • Introduction
  • Topic: The big picture (Molay Ch. 1)
          What is systems programming?
          Unix from different perspectives
  • Topic: Google Cloud shell
          "Hello, world!" (KR Ch. 1.1)

Week 2: January 27 - 31

  • Topic: C programming review (KR Ch. 2),
          Data types
          Operators
          Expressions
  • Topic: Control flow (KR Ch. 3),
          Conditions
          Loops

Week 3: February 3 - 7

Week 4: February 10 - 14

Week 5: February 17 - 21

  • Topic: Structures (KR Ch. 6)
  • Topic: Unix login records (Molay Ch. 2.1-2.5)
          Unix commands and the manual
          User records
          File IO
  • Lab 3: who

Week 6: February 24 - 28

Week 7: March 2 - 6

Week 8: March 9 - 13

  • Lab: make up
  • Midterm

Week 9: March 16 - 20

  • Spring break

Week 10: March 22 - 27

  • Topic: File properties (Molay Ch. 3.6-3.9)
          ls -l and stat
          File mode and bitmasks
  • Lab 6: ls v.2

Week 11: March 30 - April 3

  • Topic: File systems (Molay Ch. 4)
          HDD structure
          inode-based file systems
          Trees of directories
  • Lab 7: find

Week 12: April 6 - 10

  • Topic: Connection control (Molay Ch. 5)
          Devices vs files
          Disk and terminal connections
          Terminal drivers
  • Lab 8: write

Week 13: April 13 - 17

Week 14: April 20 - 24

  • Topic: Event-driven programming (Molay Ch. 7.1-7.6)
          OS-level support for games
          The curses library
          Alarms and timers
  • Lab 10: matrix

Week 15: April 27 - May 1

  • Topic: Video game programming (Molay Ch. 7.7-7.12)
          Handling multiple signals
          Using timers and signals
  • Lab: make up

Week 16: May 4 - 6

Final: May 12

  • Final exam: 10:30am - 12:30pm

Midterm and final exams

Each exam will focus on the most recent material. However, each exam will very likely include some questions aimed at the material covered by the earlier exam(s). Make-up tests may only be given if a student can provide a written proof of a serious reason for missing a test (such as illness or accident).

Labs and course project

During the labs and the course project students will work on hands-on problems focusing on the material covered in class and the corresponding reading materials. Students are required to work on labs individually. Each lab must be demonstrated in class no later than one week after the lab date; all relevant code must be submitted using BlackBoard. Late submissions for labs will be accepted during the 'make up' labs for no more than 50% of credit.

Course project must be completed by students working in teams of two. Each team will demonstrate their work to the rest of the class at the end of the semester.

Academic misconduct

All students are expected to demonstrate integrity in the completion of their coursework. Academic integrity means doing one's own work and giving proper credit to the work and ideas of others. It is the responsibility of each student to become familiar with what constitutes academic dishonesty and plagiarism and to avoid all forms of cheating and plagiarism. Students who engage in plagiarism and other forms of academic misconduct will face academic and possibly disciplinary consequences. Academic sanctions can range from a reduced grade for the assignment to a failing grade for the course. From a disciplinary standpoint, an Academic Misconduct Report may be filed and a Faculty Hearing Board may impose sanctions such as probation, suspension or expulsion.

For further information on academic misconduct and its consequences, please consult the Student Code of Conduct and the Academic Misconduct Policy.

Attendance

All students are expected to attend class sessions regularly. However, recognizing individual differences, each student is responsible for his/her own attendance and for making-up any missed study or work. Limited assistance will be offered to those with plausible reasons for absences; unexcused absences will result in the student being completely responsible for the make-up process.

Students with disabilities

Please contact me privately to discuss your specific needs if you believe you need course accommodations based on the impact of a disability, medical condition, or if you have emergency medical information to share. I will need a copy of the accommodation letter from Student Disability Services in order to arrange your class accommodations. Contact Student Disability Services if you are not already registered with them. Student Disability Services maintains the confidential documentation of your disability and assists you in coordinating reasonable accommodations with the faculty.

Other statements

Here's a link to a document containing information about other policies and resources.

Grades and evaluation

Students will be evaluated regularly during the semester and should be aware of their progress continuously during the semester. The final course grade will be reported according to the stated University policy.

The final course grade will be calculated according to the following distribution of points:

Labs (10 labs @ 4 pts each) 40
Course project 20
Midterm 20
Final exam 20
Total 100

Course letter grade will be determined as follows:

A A- B+ B B- C+ C C- D+ D D- F
94-100 90-93.99 87-89.99 84-86.99 80-83.99 77-79.99 74-76.99 70-73.99 67-69.99 64-66.99 60-63.99 0-59.99