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1. Introduction 
 
Along with search engines, topic directories (a.k.a. web directories) are the most popular 
sites on the Web as they are usually provided to narrow searches.  Topic directories 
organize web pages in a hierarchical structure (taxonomy, ontology) according to their 
content. The purpose of this structuring is twofold. First, it helps web searches focus on 
the relevant collection of Web documents. The ultimate goal here is to organize the entire 
web into a directory, where each web page has its place in the hierarchy and thus can be 
easily identified and accessed.  The Open Directory Project (dmoz.org) is one of the best-
known projects in this area. Second, the topic directories can be used to classify web 
pages or associate them with known topics.  This “tagging” process can be used to extend 
the directories themselves.  In fact, well-known search engines such as Yahoo and 
Google may return with their responses the topic path, if the response URL has been 
associated with some topic found in a topic directory.  As these topic directories are 
usually created manually they cannot capture all URL’s, therefore just a fraction of all 
responses are tagged. 

2. Project overview 
 
The aim of the project is to investigate the process of tagging web pages using topic 
directory structures and apply ML techniques for automatic tagging or classifying web 
pages into topic categories.  This would help filter search engine responses or rank them 
according to their relevance to a user-specified topic.  For example, a Yahoo keyword 
search for “Machine Learning” may return topic directory paths along with the pages 
found: 

Category: Artificial Intelligence > Machine Learning  
Category: Artificial Intelligence > Web Directories  
Category: Maryland > Baltimore > Johns Hopkins University > Courses  

However, most of the pages returned are not tagged with directory topics.  Assuming that 
we know the general topic of such an untagged web page, e.g., Artificial Intelligence, and 
this is a topic in a directory, we can try to find the closest subtopic to the web page found.  
This is where machine learning comes into play. Using some text document classification 
techniques we can classify the new web page to one of the existing topics.  By using the 
collection of pages available under each topic as examples we can create category 
descriptions (e.g. classification rules, or conditional probabilities). Using these 
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descriptions, we can then classify new web pages. Another approach would be the 
similarity search approach, where we find the closest text document according to some 
metric, and assign its category to the new web page. 

3. Project objectives 
 
While working on this project students will learn the basics of information retrieval, data 
mining and machine learning, gain experience in using recent software applications, and 
most importantly have a better understanding of the role that fundamental AI concepts as 
knowledge representation and search play in these areas. 
 
While reinforcing traditional AI core topics within a single, unified task of web document 
classification, the project allows the discussion of various issues related to machine 
learning, including:  

� Basic concepts and techniques of machine learning 

� Learning system implementation issues  

� The role of learning in improved performance and in allowing a system to adapt 
based on previous experiences 

� The important role data preparation and feature extraction play in machine 
learning 

� The vector space model for representing web documents 

� Feature extraction techniques with associated pros and cons for identifying and 
classifying documents 

� The importance of model evaluation in machine learning and, in particular, the 
training and testing framework used to choose the best model for web page 
classification. 

4. Project description 
 
The project is split into three major parts: data collection, feature extraction, and machine 
learning. These parts are also phases in the overall process of knowledge extraction from 
the web and classification of web documents (tagging). As this process is interactive and 
iterative in nature, the phases may be included in a loop structure that would allow each 
stage to be revisited so that some feedback from later stages can be used. The parts are 
well defined and can be developed separately (e.g. by different teams) and then put 
together as components in a semi-automated system or executed manually. Hereafter we 
describe the project phases in detail along with the deliverables that the students need to 
submit on completion of each stage. 
 
Phase 1 consists of collecting a set of 100 web documents grouped by topic. Phase 2 
involves feature extraction and data preparation.  During this phase the web documents 
will be represented by feature vectors, which in turn are used to form a training data set 
for the Machine Learning stage.  In Phase 3 machine learning algorithms are used to 
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create models of the data sets.  These models are used for two purposes.  Firstly, the 
accuracy of the initial topic structure is evaluated and secondly, new web documents are 
classified into existing topics.   
 
4.1. Phase 1: Collecting web documents grouped by topic 
 
The purpose of this phase is to collect sets of web documents belonging to different 
topics (subject areas).  The students begin by examining a topic directory structure.  Such 
structures are available from dmoz.org (the Open Directory project), Google directory 
(directory.google.com), Yahoo! directory (dir.yahoo.com) and other web directories2.  
They first find several topics (e.g. 5), each of which is well represented by a sufficient 
number of documents (e.g. 20). Alternative approaches would be to extract web 
documents manually from a list of search engine hits, or collect web pages by using a 
Web Crawler (a good example is WebSPHINX available at http://www-
2.cs.cmu.edu/~rcm/websphinx/) from the web page structure of a large organization (e.g. 
a university). The outcome of this phase is a collection of several sets of web documents 
representing different topics or subjects. Below are some guidelines that should be 
followed during this phase of the project: 

a) As the topics will be used for learning and classification experiments at later phases 
they have to form a specific structure (part of the topic hierarchy). It’s good to have 
topics at different levels of the topic hierarchy and with different distances between 
them (i.e. different depths in the hierarchy tree).  An example of such structure is the 
following:  

topic1 > topic2 > topic3  
topic1 > topic2 > topic4  
topic1 > topic5 > topic6  
topic1 > topic7 > topic8  
topic1 > topic9  

The set of topics here is formed by the leaves of the tree which are topic3, topic4, 
topic6, topic8, and topic9.  Also, it would be interesting to consider a more general 
graph structure where topics may have more than one parent, as this would make the 
classification task more difficult. 

b) There must be at least 5 different topics with at least 20 documents in each.  

c) Each document should contain a certain minimum amount of text, e.g. 200 words 
excluding stopwords and punctuation marks. 

Our experiences with the project show that students easily understand this phase and 
prepare the initial data well without much guidance. This phase also provides an 
opportunity to connect to other CS and AI topics such as trees, graphs, semantic networks 
and ontologies. For example, an interesting question that students may be asked to 
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investigate is the possibility of cycles in the topic hierarchy. This question is related to 
the generality/specificity of topics and may be also considered in the context of set-subset 
relationships. 

4.2. Phase 2: Feature extraction and data preparation 

In this phase, web documents are represented by feature vectors, which in turn are used to 
form a training data set for the machine learning phase.  This conversion actually 
illustrates the basic concepts of the vector space document model that plays an important 
role in information retrieval and web search.  Various approaches and tools may be used 
to achieve the goals of this phase in the project. However, we recommend using the 
Weka machine learning system [4] in this and later phases. Although it is a large software 
suite, it is easy to install and use with an intuitive graphical interface. Learning to use the 
whole functionality of the system might overwhelm students in a one-semester course. 
However, for the purposes of this project only a small subset of functions is needed. 
Students may easily learn these functions on their own using online material, but in this 
phase we would especially recommend faculty assistance. Our experience shows that this 
may be done in a one or two hour lab that may also be used as a demo session for the ML 
part of the AI class.  
 
Hereafter we outline the basic steps that have to be taken at this phase. 
 
4.2.1. Downloading and installing Weka 
 
The Weka system is available at http://www.cs.waikato.ac.nz/~ml/weka/. It comes with 
documentation and helpful examples to familiarize students with its use. A suggested 
exercise for this step is experimenting with the weather data set (weather.arff and 
weather.nominal.arff), which is also a classical example for the ML part in the AI course. 
 
4.2.2. Creating a string data file in ARFF format 
 
The Weka ARFF data format is described in the book [4] as well as in the document 
http://www.cs.waikato.ac.nz/~ml/weka/arff.html. To accomplish this step students have 
first to create a concatenation of all text documents (text corpus) obtained from the data 
collection step and save them in a single text file, where each document is represented on 
a separate line in plain text format. For example, this can be done by loading all text files 
in MS Word and then saving the file in plain text format without line breaks. Other 
editors may be used for this purpose too. Students with programming experience may 
want to write a program to automate this process. 
 
Once the file with the text corpus is created each line in it (an individual document 
content) must be enclosed in quotation marks ("), a document name or ID has to be added 
in the beginning of the line, and the document topic (class) - at the end, all separated by 
commas. Also, a file header is needed in the beginning of the file followed by @data as 
shown below: 
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@relation text_corpus_1_string 
 
@attribute document_name string 
@attribute document_content string 
@attribute document_class string 
 
@data 
 
Doc1, "example text document …", topic3 
… 
 
This representation uses three attributes – document_name, document_content, and 
document_class, all of type string. Each row in the data section (after @data) represents 
one of the initial text documents. Note that the number of attributes and the order in 
which they are listed in the header should correspond to the comma separated items in the 
data section. An example of such string data file is “Departments-string.arff”, available 
from the data repository at http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka 
data”. 
 
4.2.3. Creating Term counts, Boolean, and TFIDF data sets 
 
The string data file is now loaded in Weka using the “Open file” button in “Preprocess” 
mode. After successful loading the system shows some statistics about the number of 
attributes (3) their type (string) and the number of instances (rows in the data section or 
documents). 
 
At this point we start transforming our documents into feature vectors. First, we choose 
the StringToNominal filter and apply it (one at a time) to the first attribute, 
document_name and then to the last attribute (index 3), document_class. Then we choose 
the StringToWordVector filter and apply it with outputWordCounts=true. We may also 
change the setting of onlyAlphabeticTokens and useStoplist to see how the results 
change. As Weka moves the class attribute at the second place, we need to move it back 
last by using the Copy filter and the Remove button. The result of all these steps is a 
Weka data set that uses a term count representation for the documents. An example of 
this data set is the file “Departments-counts.arff”, available from the data repository at 
http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka data”. 
 
Now we have a document-term matrix loaded in Weka. By pressing the “Edit” button we 
can see it in a tabular format, where we can also change its content or copy it to other 
applications (e.g. MS Excel). Once created in Weka the table can be stored in an ARFF 
file through the “Save” option. Weka can also show some interesting statistics about the 
attributes. The class distribution over the values of each attribute (including the document 
name) is shown at the bottom of the “Selected attribute” area. With “Visualize All” we 
can see the class distribution in all attributes. If we change the class to document_name 
we can see the distribution of terms over documents as bar diagrams.  
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A good exercise here is to examine the diagrams (the color indicates the document) and 
find the most specific terms for each document.  
 
Similarly we can create the boolean and TFIDF representation of the document 
collection. Examples of these representations are provided in the files Departments-
binary.arff and Departments-TFIDF.arff, available from the data repository at 
http://www.cs.ccsu.edu/~markov/dmwdata.zip, folder “Weka data”. The comment in the 
beginning of each file explains the steps taken to create it. 
 
To obtain the Boolean representation we need to apply the NumericToBinary filter to the 
term count representation. It’s interesting to see how the diagrams change. For the TFIDF 
representation, we use the original string representation and apply the 
StringToWordVector filter with IDFTransform=true. Another good exercise here is to 
examine the document-term table and the bar diagrams and explain why some columns 
are filled with zeros only. 
 
As a result of this phase, students have to provide ARFF data files containing the feature 
vectors for all web documents collected at Phase 1. We recommend that students prepare 
all three data files – Boolean, term count, and TFIDF, and also provide some statistics 
(tables and diagrams) and analysis of the attributes and class distributions (see the 
suggested exercises above).  Versions of the data sets with different numbers of attributes 
can be also prepared.  
 
A suggested reading for this phase of the project is Chapter 1 of Data Mining the Web 
book [2]. This chapter discusses the basics of information retrieval and provides a set of 
exercises explaining the details of all steps needed to complete this phase of the project. 
Example datasets as well as Weka files for the string, Boolean, term count, and TFIDF 
representation formatted as ARFF files are available from the companion website of the 
book (http://www.dataminingconsultant.com/DMW.htm) and also from the authors’ web 
page (http://www.cs.ccsu.edu/~markov/dmwdata.zip). Another good reading for this and 
later steps of the project is the excellent book by Witten and Frank [4], which discusses 
machine learning algorithms in general as well as their implementation and use through 
the Weka system. 
 
To complete this phase, in addition to Weka, other software tools for text processing are 
also needed, especially at step 2 in creating the string file with the text corpus. Students 
are usually provided with suggested approaches and tools for this purpose (for example, 
using MS Word to concatenate documents and convert them into plan text format). They 
are also given a choice to use any other software they may find suitable for the task. Our 
experience with this project shows that students at this level generally have the required 
background and skills to find and use the software they need. (Some even find this step 
interesting and challenging and write their own programs for text processing.) However, 
concerning Weka, we believe more faculty guidance is needed. Students find the Weka 
documentation insufficient and often ask for help. As we mentioned above, an hour or 
two hands-on lab usually suffices to fill this gap and to allow students to use Weka 
successfully in other phases of the project and for other Weka-based projects beyond. 
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4.3. Phase 3: Machine Learning 
 
At this phase, machine learning algorithms are used to create models of the data sets.  
These models are then used for two purposes: (1) the accuracy of the initial topic 
structure is evaluated, and (2) new web documents are classified into existing topics.  The 
Weka system is used for both purposes.  The ML phase consists of the following steps: 

1. Preprocessing web document data:  In this step, the ARFF files created at project 
phase 2 have to be verified for consistency and analyzed by using the preprocess 
mode.  

2. Creating decision tree models with Weka’s decision tree algorithm (J48): Good 
questions to ask students at this step are: Which are the most important terms for each 
data set (the terms appearing on the top of the tree)? How do they change with 
changing the data set? Also, students have to check the classification accuracy and the 
confusion matrix obtained with 10-fold cross-validation in order to find out which 
topic is best represented by the decision tree.  

3. Applying the Naïve Bayes and Nearest Neighbor (IBk) algorithms: Students compare 
the classification accuracy and confusion matrices obtained with 10-fold cross-
validation from these algorithms with the ones produced by the decision tree in order 
to evaluate which is superior and provide an explanation. 

4. Experimenting with clustering: Three basic clustering algorithms, k-means, EM, and 
Cobweb, are applied to all data sets where the class attribute (document topic) is 
ignored. The resulting clusterings are then analyzed and compared with the original 
set of topics, or with the topic hierarchy when using Cobweb. Weka’s classes to 
clusters evaluation method may be also used for this purpose.  A data mining lab that 
provides useful information and tips about this step is available online.3 

5. Classifying new web documents:  Students find web documents from the same 
subject areas (topics), but not belonging to the original set of documents prepared in 
project phase 1. Documents from different topics are also needed. Then, feature 
extraction is applied and ARFF files are created for each document.  Using the Weka 
test set option the new documents are classified and their original topic is compared 
with the one predicted by Weka. Additional online material provides guidelines for 
this step.4  

 
For this final phase of the project, students may be asked to write a report on the 
experiments performed, including detailed descriptions of all experiments (input data, 
Weka outputs), answers to the questions, and interpretation and analysis of the results 
with respect to the original problem stated in the project, web document classification.  
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5. Prerequisites and requirements 
 
To accomplish this project students should have basic knowledge of algebra, discrete 
mathematics and statistics. Another prerequisite is the data structures course.  While not 
necessary, experience with programming in Java would be helpful as the project uses 
Java-based packages. These packages are open source and students may want to use 
specific parts of their code to implement stand-alone applications. 
  
The project is customizable and can accommodate different teaching approaches and 
different implementations depending on the choice of particular problems to be solved 
and tools to be used. The data collection step can be implemented manually or by using 
some software tools. The machine learning step uses implementations of Decision Trees, 
Naïve Bayes, and Nearest Neighbor algorithms available from free open source software 
packages. This allows the project to be extended to building stand-alone applications 
depending on the particular teaching goals and student experience in programming. 
 
The software packages and data sets used in the project are freely available on the Web: 
 
• Weka 3 – Free open source Machine Learning and Data Mining software in Java 

available from http://www.cs.waikato.ac.nz/~ml/weka/index.html. 
• Data sets for document classification accompanying the book Data Mining the Web: 

Uncovering Patterns in Web Content, Structure, and Usage ([2]) available from 
http://www.cs.ccsu.edu/~markov/dmwdata.zip. 

  
It is recommended that before starting the project students read Chapters 18 and 20 of 
Russell and Norvig’s book ([1]), and Chapters 1, 3, and 5 of Markov and Larose’s book 
([2]), or Chapters 3,  6, and 8 of Mitchell’s book ([3]). While working on the project 
students can use Witten and Frank’s book [4] and the online documentation for the Weka 
3 system available with the installation or from the website. 
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