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1. Introduction 

 

This document describes algorithms for attribute ranking and clustering originally described in [1, 2, 

3], an algorithm for attribute discretization briefly outlined hereafter, and a utility for creating string 

ARFF files. The algorithms are available as Java classes from a JAR file, which can be downloaded at 

http://www.cs.ccsu.edu/~markov/MDLclustering/MDL.jar. The archive also includes all Weka classes 

[4]. The archive is executable and starts the Weka command-line interface (Simple CLI), which 

provides access to these algorithms and to the full functionality of the Weka data mining software as 

well (see the Weka manual at http://www.cs.waikato.ac.nz/ml/weka/documentation.html). The data 

files mentioned in this document are available from a zip archive at  

http://www.cs.ccsu.edu/~markov/MDLclustering/data.zip. 

2. Attribute Ranking 

 

The original idea of the attribute ranking proposed in [1, 2, 3] is the following. First we split the data 

using the values of an attribute, i.e. create a clustering such that each cluster contains the instances that 

have the same value for that attribute. Then we compute the MDL of this clustering and use it as a 

measure to evaluate the attribute assuming that the best attribute minimizes MDL. This approach 

works for nominal attributes. To apply it to numeric attributes we first split the range of the attribute 

values into two intervals, which then can be used as nominal values for ranking. The idea is to find a 

breakpoint that minimizes the MDL of the resulting split of data. Hereafter we illustrate this process 

with the weather data example (data file weather.arff). 

 
outlook temperature humidity windy play 
sunny 85 85 FALSE no 
sunny 80 90 TRUE no 
overcast 83 86 FALSE yes 
rainy 70 96 FALSE yes 
rainy 68 80 FALSE yes 
rainy 65 70 TRUE no 
overcast 64 65 TRUE yes 
sunny 72 95 FALSE no 
sunny 69 70 FALSE yes 
rainy 75 80 FALSE yes 
sunny 75 70 TRUE yes 
overcast 72 90 TRUE yes 
overcast 81 75 FALSE yes 
rainy 71 91 TRUE no 

 

Two of the attributes in this dataset are numeric – temperature and humidity. Assume we want to 

evaluate humidity. First we order the values of this attribute (excluding repetitions) and start looking 

for a breakpoint, which will split them in two subsets. We consider each value as a possible 

breakpoint and compute the MDL for the split of data based on this value. When computing MDL we 

exclude the class attribute (play). The result of this process is shown in the table below, where the first 

row shows the ordered values (x), the second – the distribution of instances based on the split of data 

using that value (the number of instances with humidity less than or equal to x / the number of 

instances with humidity greater than x), and the third – the MDL for the split. 

  

x 65 70 75 80 85 86 90 91 95 96 

#[65, x] / #(x, 95] 1 / 13 4 / 10 5 / 9 7 / 7 8 / 6 9 / 5 11 / 3 12 / 2 13 / 1 – 

MDL([65, x], (x, 96]) 201.70 203.77 203.61 200.48 201.28 202.03 205.65 204.04 201.70 – 

http://www.cs.ccsu.edu/~markov/MDLclustering/MDL.jar
http://www.cs.waikato.ac.nz/ml/weka/documentation.html
http://www.cs.ccsu.edu/~markov/MDLclustering/data.zip


 

Choosing a value of x as a breakpoint defines a possible discretization of the attribute in two intervals, 

[65, x] and (x, 96]. The best split is the one that minimizes MDL, which is obtained with breakpoint 

80, or the intervals [65, 80] and (80, 96]. Thus we compute the MDL of humidity as 200.48 and then 

rank it along with the rest of the attributes.  

 

The general format for running this algorithm in CLI is: 
 

java MDLranker <input file>.arff [# of attributes] [<output file>.{arff|csv}] [de] 

 

The input file must be in ARFF format. The second argument specifies the number of attributes from 

the top of the ranked list to be displayed or written to the output file. Note that the last attribute in the 

data set (the default class attribute, “play” in the weather data) is not used for ranking and is excluded 

from this list (but added in the output file). The output file format may be either ARFF or CSV and is 

determined by the file name extension. When the fourth argument (de) is specified the numeric 

attributes are first transformed by applying nonparametric density estimation. For this purpose we use 

equal-interval binning and calculate the width of the interval h using the Scott’s method as 
3/1
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h
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where n is the number of values of the attribute and  – its standard deviation. Below is the output 

produced by the MDLranker algorithm applied to the weather data. The data set is written on the 

output file weather.ranked.csv, where the attributes humidity and temperature are switched. 

 
> java MDLranker data/weather.arff 4 data/weather.ranked.csv 

 

Attributes: 5 

Ignored attribute: play 

Instances: 14 (non-sparse) 

Attribute-values in original data: 27 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 197.39 

-------------------------------------------------------------------- 

Top 4 attributes ranked by MDL: 

199.47 @attribute outlook {sunny,overcast,rainy} 

200.48 @attribute humidity numeric 

201.29 @attribute temperature numeric 

202.51 @attribute windy {TRUE,FALSE} 

--------------------------------------- 

Time(ms): 15 

 

Note that the minimum encoding length of data is less than the MDL of the best attribute. This usually 

happens when there are too many attribute values and indicates that the MDL encoding does not help 

to reduce the code length of data. Applying density estimation reduces the number of attribute values 

and lowers the MDL encoding length as shown below. 
 
> java MDLranker data/weather.arff 4 de 

 

Attributes: 5 

Ignored attribute: play 

Instances: 14 (non-sparse) 

Attribute-values in original data: 27 

Numeric attributes with missing values (replaced with mean): 0 

Attribute-values after density estimation: 9 

Minimum encoding length of data: 97.68 

-------------------------------------------------------------------- 

Top 4 attributes ranked by MDL: 

92.07 @attribute outlook {sunny,overcast,rainy} 

94.15 @attribute temperature numeric 

94.15 @attribute humidity numeric 

94.15 @attribute windy {TRUE,FALSE} 



3. Attribute Discretization 

 

The attribute discretization algorithm processes the numeric attributes in the same way as the 

MDLranker (described above). The general format for running this algorithm in CLI is: 

 
java MDLdiscretize <input file>.arff <output file>.{arff|csv} [de] 

 

The input file must be in ARFF format, while the output file format is specified by the file extension. 

When the third argument (de) is specified the numeric attributes are first transformed by density 

estimation (as in the MDLranker algortihm). Below is the output produced by the MDLdiscretize 

algorithm applied to the weather data: 

 
> java MDLdiscretize data/weather.arff weather.discretized.arff 

 

Attributes: 5 

Ignored attribute: play 

Instances: 14 (non-sparse) 

Attribute-values in original data: 27 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 197.39 

--------------------------------------- 

@attribute temperature {[64-80],(80-85]} 

@attribute humidity {[65-80],(80-96]} 

2 numeric attributes discretized 

Time(ms): 31 

 

The contents of the output file is the following: 

 
@relation weather.MDLdiscretize 

 

@attribute outlook {sunny,overcast,rainy} 

@attribute temperature {[64-80],(80-85]} 

@attribute humidity {[65-80],(80-96]} 

@attribute windy {TRUE,FALSE} 

@attribute play {yes,no} 

 

@data 

sunny,(80-85],(80-96],FALSE,no 

sunny,[64-80],(80-96],TRUE,no 

overcast,(80-85],(80-96],FALSE,yes 

rainy,[64-80],(80-96],FALSE,yes 

rainy,[64-80],[65-80],FALSE,yes 

rainy,[64-80],[65-80],TRUE,no 

overcast,[64-80],[65-80],TRUE,yes 

sunny,[64-80],(80-96],FALSE,no 

sunny,[64-80],[65-80],FALSE,yes 

rainy,[64-80],[65-80],FALSE,yes 

sunny,[64-80],[65-80],TRUE,yes 

overcast,[64-80],(80-96],TRUE,yes 

overcast,(80-85],[65-80],FALSE,yes 

rainy,[64-80],(80-96],TRUE,no 
 

Using the density estimation option changes the intervals for the values of temperature and humidity: 

 
> java MDLdiscretize data/weather.arff weather.discretized.arff de 

 

Attributes: 5 

Ignored attribute: play 

Instances: 14 (non-sparse) 

Attribute-values in original data: 27 



Numeric attributes with missing values (replaced with mean): 0 

Attribute-values after density estimation: 9 

Minimum encoding length of data: 97.68 

--------------------------------------- 

@attribute temperature {[64.0-74.5],(74.5-85.0]} 

@attribute humidity {[65.0-80.5],(80.5-96.0]} 

2 numeric attributes discretized 

Time(ms): 125 

 

4. Clustering 

 

The MDL clustering algorithm is described in [2]. It starts with the data split produced by the attribute 

that minimizes MDL and then recursively applies the same procedure to the resulting splits, thus 

generating a hierarchical clustering. For nominal attributes the number of splits is equal to the number 

of attribute values. Numeric attributes are treated in the same way as in the previous algorithms, and 

then the breakpoint that minimizes MDL is used to split the data in two subsets. The process of 

growing the clustering tree is controlled by a parameter evaluating the information compression at 

each node. The information compression is computed as the difference between the code length of the 

data at the current node of the tree and the MDL of the attribute that produces the data split. If the 

compression becomes lower than a specified cutoff value the process of growing the tree stops and a 

leaf node is created. An experimentally determined value of 20% of the information compression at 

the root of the tree is used as a default cutoff. 

 

The general format for running this algorithm in CLI is the following: 
 

java MDLcluster <input file>.arff [compr. cutoff] [de] [<output file>.{arff|csv}] 

 

The input file must be in ARFF format. When specified the output file (in ARFF or CSV format) 

contains the cluster assignments as an additional attribute added as a last attribute (after the class 

attribute). If the compression cutoff is omitted the default value is used (20% of the initial 

compression).  The meaning of the de argument is the same as in the previous algorithms.  

 

An example of running MDLcluster with the iris data set is shown below: 

 
> java MDLcluster data/iris.arff 

 

Attributes: 5 

Ignored attribute: class 

Instances: 150 (non-sparse) 

Attribute-values in original data: 123 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 3467.11 

--------------------------------------------------------------- 

(238.38) (47.68)  

#petallength<=1.9 (49.44)  

  #sepalwidth<=3.2 (10.37) [18,0,0] Iris-setosa 

  #sepalwidth>3.2 (22.63) [32,0,0] Iris-setosa 

#petallength>1.9 (78.29)  

  #sepallength<=6.2 (28.20) [0,36,13] Iris-versicolor 

  #sepallength>6.2 (30.90) [0,14,37] Iris-virginica 

 

--------------------------------------- 

Number of clusters (leaves): 4 

Correctly classified instances: 123 (82%) 

Time(ms): 16 



The number in the parentheses represents the information compression at the corresponding node of 

the clustering tree (the second number at the root is the default cutoff), and the numbers in square 

brackets – the distribution of the class labels at the tree leaves. For each leaf the majority class label is 

also shown. The class distribution in the leaves provides information for evaluating the clustering 

quality when class labels are known (but ignored for the purposes of clustering) by using the classes-

to-clusters evaluation measure (also used in Weka). It is a comparison to the “true” cluster 

membership specified by the class attribute and is computed as the total number of majority labels in 

the leaves divided by the total number of instances. This measure is reported as “Correctly classified 

instances” (123 out of 150, or 82%).  

Below is another example that illustrates the use of the compression cutoff.  

> java MDLcluster data/soybean-small.arff 

 

Attributes: 36 

Ignored attribute: class 

Instances: 47 (non-sparse) 

Attribute-values in original data: 72 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 3221.60 

--------------------------------------------------------------- 

(951.79) (190.36)  

stem-cankers=0 (51.15) [0,10,0,0] D2 

stem-cankers=1 (153.77) [0,0,10,8] D3 

stem-cankers=2 (53.56) [0,0,0,9] D4 

stem-cankers=3 (46.84) [10,0,0,0] D1 

--------------------------------------- 

Number of clusters (leaves): 4 

Correctly classified instances: 39 (82%) 

This clustering is produced with the default cutoff of 190.36, so all leaves of the tree have a smaller 

compression. The class distribution information suggests that we may get a better clustering by 

splitting cluster “stem-cankers=1”, because it is not “pure” (as the other three). If we don’t know the 

class labels (in this case we have to use a dummy class attribute), we still may be able to arrive at the 

same conclusion just by comparing the compression values of different clusters – the compression of 

“stem-cankers=1” is substantially larger than the compression at the other clusters, so it may be 

possible to expand the tree at this node and still have a good compression. To do this we have to use a 

cutoff value less than 153.77 and greater than 53.56 (not to split any of the other clusters).  The result 

of this run is shown below. 

> java MDLcluster data/soybean-small.arff 100 

 

Attributes: 36 

Ignored attribute: class 

Instances: 47 (non-sparse) 

Attribute-values in original data: 72 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 3221.60 

--------------------------------------------------------------- 

(951.79)  

stem-cankers=0 (51.15) [0,10,0,0] D2 

stem-cankers=1 (153.77)  

  canker-lesion=1 (78.09) [0,0,10,0] D3 

  canker-lesion=2 (42.95) [0,0,0,8] D4 

stem-cankers=2 (53.56) [0,0,0,9] D4 

stem-cankers=3 (46.84) [10,0,0,0] D1 

--------------------------------------- 

Number of clusters (leaves): 5 

Correctly classified instances: 47 (100%) 



5. Utilities 

5.1. ARFFstring class 

 

By using the ARFFstring class large collections of text/HTML files may be transformed into ARFF 

files with string attributes and then converted to TF/TFIDF type by applying the StringToWordVector 

filter. The general format of using this class is the following: 

 
java ARFFstring <input directory> <class label> <output file> 

 

This command creates a text file with as many lines as files in the input directory, where each line 

contains the following: 

 
"file name", "file content", "class label" 

 

The files in the input directory must contain plain text or HTML, where all HTML tags are removed.  

 

Below we describe the steps for creating an ARFF file from the departments document collection 

available from http://www.cs.ccsu.edu/~markov/MDLclustering/data.zip: 

 

1. Create file deptA with the files in folder data/departments/A with class label A: 

 
java ARFFstring data/departments/A A deptA 

 

2. Create file deptB with the files in folder data/departments/B with class label B: 

 
java ARFFstring data/departments/B B deptB 

 

3. Merge deptA and deptB. This can be done in a command prompt window with the copy command: 
 

copy deptA + deptB departments-string.arff 
 

4. Add the following ARFF file header in the beginning of departments-string.arff: 
 

@relation departments_string 

 

@attribute document_name string 

@attribute document_content string 

@attribute document_class string 

 

@data 

 

5. Convert the first and the third attribute into nominal and write the output on temp1.arff: 

 
java  weka.filters.unsupervised.attribute.StringToNominal  

-i departments-string.arff  

-o temp1.arff -R 1,3 

 

6. Transform the second attribute (document_content) into a set of numeric attributes representing the 

word presence (0/1) in the documents: 

 
java  weka.filters.unsupervised.attribute.StringToWordVector  

-i temp1.arff  

-o temp2.arff  

-S  

-tokenizer weka.core.tokenizers.AlphabeticTokenizer 

http://www.cs.ccsu.edu/~markov/MDLclustering/data.zip


 

7. Move the document_class attribute to the end and write the output to departments.arff: 

 
java weka.filters.unsupervised.attribute.Reorder  

-i temp2.arff  

-o departments.arff  

-R 1,3-last,2 

 

8. The data set departments.arff can now be used for clustering, classification and other 

experiments. For example: 
 

> java MDLcluster departments.arff 

 

Attributes: 612 

Ignored attribute: document_class 

Instances: 20 (sparse) 

Attribute-values in original data: 1234 

Numeric attributes with missing values (replaced with mean): 0 

Minimum encoding length of data: 24569.11 

--------------------------------------------------------------- 

(4305.58) (861.12)  

#major<=0 (1498.23)  

  #computer<=0 (247.68) [2,3] B 

  #computer>0 (255.52) [4,1] A 

#major>0 (1452.01)  

  #offers<=0 (265.72) [3,2] A 

  #offers>0 (264.13) [2,3] B 

 

--------------------------------------- 

Number of clusters (leaves): 4 

Correctly classified instances: 13 (65%) 

Time(ms): 375 

 

5.2. Increasing the heap size for the Java virtual machine 

 
The parameter –Xmx<heap size> may be used in the command line to set the maximum heap size 

used by the Java virtual machine. This can be done when starting the MDL.jar in the Windows 

command prompt. For example, the following command will initialize the Java virtual machine with 

1600 Mb maximum heap size and start the Weka CLI. 
 

java -Xmx1000m -jar MDL.jar 

 

Similarly, any class from MDL.jar may be started in the command prompt window after extracting the 

archive. For example, the following command will initializes the Java virtual machine with 1000 Mb 

maximum heap size and start the MDLcluster class. 

 
java -Xmx1000m MDLcluster data/weather.arff 
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