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13  Sorting and Searching 
 
Overview 
 
This chapter discusses several standard algorithms for sorting, i.e., putting a number of 
values in order.  It also discusses the binary search algorithm for finding a particular 
value quickly in an array of sorted values.  The algorithms described here can be useful 
in various situations.  They should also help you become more comfortable with logic 
involving arrays.  These methods would go in a utilities class of methods for Comparable 
objects, such as the CompOp class of Listing 7.2.  For this chapter you need a solid 
understanding of arrays (Chapter Seven). 
 
• Sections 13.1-13.2 discuss two basic elementary algorithms for sorting, the 

SelectionSort and the InsertionSort. 
• Section 13.3 presents the binary search algorithm and big-oh analysis, which 

provides a way of comparing the speed of two algorithms. 
• Sections 13.4-13.5 introduce two recursive algorithms for sorting, the QuickSort and 

the MergeSort, which execute much faster than the elementary algorithms when you 
have more than a few hundred values to sort. 

• Sections 13.6 goes further with big-oh analysis. 
• Section 13.7 presents several additional sorting algorithms -- the bucket sort, the 

radix sort, and the shell sort. 
 
 

13.1 The SelectionSort Algorithm For Comparable Objects 
 
When you have hundreds of Comparable values stored in an array, you will often find it 
useful to keep them in sorted order from lowest to highest, which is ascending order.  To 
be precise, ascending order means that there is no case in which one element is larger 
than the one after it -- if y is listed after x, then x.CompareTo(y) <= 0.  Sometimes 
you prefer to store them from highest to lowest, which is descending order (no element 
is smaller than the one after it).  The usual sorting problem is to write an independent 
method that puts an array into ascending order. 
 
Finding the smallest in a partially-filled array 
 
As a warmup to a sorting algorithm, look at a simpler problem for an array of Comparable 
objects:  How would you find the smallest value in a given range of values in an array? 
 
Say the parameters of the method are the array item, the first index start, and the 
ending index end, where the values to search are from item[start] up through 
item[end]; assume start <= end.  You look at the first value: smallestSoFar = 
item[start].  Then you go through the rest of the values in the array one at a time.  
Whenever the current value is smaller than smallestSoFar, you store it in 
smallestSoFar.  So an independent class method to do this would be as follows: 
 
 public static Comparable findMinimum (Comparable[ ] item,  
                                       int start, int end) 
 { Comparable smallestSoFar = item[start]; 
  for (int k = start + 1;  k <= end;  k++) 
  { if (item[k].compareTo (smallestSoFar) < 0) 
    smallestSoFar = item[k]; 
  } 
  return smallestSoFar; 
 } //======================= 
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Say you apply this logic to the array in Figure 13.1 with start being 2 and end being 5.  
The figure indicates the values by decimal numbers to make this example clearer.  You 
begin by noting the smallest so far is 5.0, which is the value at index 2.  Next you go 
through each index value from index 3 on up, stopping after processing index value 5: 
 
• You compare item[3] to 5.0 but make no change, because item[3] is not 

smaller than 5.0.   
• You compare item[4] to 5.0 and assign that value 3.0 to be the smallest so far, 

because item[4] is smaller than 5.0.   
• You compare item[5] to 3.0 but make no change, because item[5] is not 

smaller than 3.0.  The end result is that you return the value 3.0 from the method. 
 
 

 
 Figure 13.1  An array with six decimal values 
 
 
Naturally this logic only works if the array has non-null Comparable values in components 
2 through 5.  Now try a mild modification of this logic:  How would you find the smallest 
value and swap it with the value at index start?  It is not enough to find the smallest; 
you have to find the index where the smallest is stored.  The coding is very similar to that 
of findMinimum: 
 
 int indexSmallest = start; 
 for (int k = start + 1;  k <= end;  k++) 
 { if (item[k].compareTo (item[indexSmallest]) < 0) 
   indexSmallest = k; 
 } 
 
Then you can swap the value at that index with the value at index start.  For instance, 
for the array in Figure 13.1, you would find that the index of the smallest is 4, because 
that is where the 3.0 is.  So you swap the value at index 4 with the value at index start: 
 
 Comparable saved = item[start]; 
 item[start] = item[indexSmallest]; 
 item[indexSmallest] = saved; 
 
The SelectionSort Algorithm 
 
With this warmup, you can look at a standard method of putting all array values in 
ascending order.  This algorithm is the SelectionSort Algorithm.  The plan is to select 
the smallest of all the values and swap it into component 0.  Then select the smallest of 
all the values from index 1 on up and swap it into component 1.  At this point you have 
the two smallest values of all, in ascending order in the first two components of the array. 
 
You next select the smallest of all the values from index 2 on up and swap it into 
component 2.  Now you have the three smallest values of all, in ascending order in the 
first three components of the array.  Next you select the smallest of all the values from 
index 3 on up and swap it into component 3.  This continues until you come to the end of 
the values in the array.  Then all of the values are in ascending order.   
 
Figure 13.2 illustrates the sequence of steps on the array with six values, at indexes 0 
through 5, from Figure 13.1.  The process only needs five steps, because once the first 
five are at the right index, the last one must be (do you see why?).  On Step 5a, the 
smallest of the two values is already at the right spot, so swapping it has no effect.   
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The indexes of the six components are: 0 1 2 3 4 5 
And the values stored in the array are initially: 7 12 5 8 3 6 
Step 1a:  Find the location of the smallest at index 0...5: ? ? ? ? �� ? 

Step 1b:  Swap it with the value at index 0: 3 12 5 8 7 6 
Step 2a:  Find the location of the smallest at index 1...5: " ? �� ? ? ? 

Step 2b:  Swap it with the value at index 1: " 5 12 8 7 6 
Step 3a:  Find the location of the smallest at index 2...5: " " ? ? ? �� 
Step 3b:  Swap it with the value at index 2: " " 6 8 7 12 
Step 4a:  Find the location of the smallest at index 3...5: " " " ? �� ? 

Step 4b:  Swap it with the value at index 3: " " " 7 8 12 
Step 5a:  Find the location of the smallest at index 4...5: " " " " �� ? 

Step 5b:  Swap it with the value at index 4: " " " " 8 12 
 
 Figure 13.2  Sequence of operations for the SelectionSort 
 
 
This algorithm can be expressed in just a few statements, using the coding previously 
developed.  We will sort a partially-filled array of Comparable values, i.e., we have a 
size int value and we are only concerned with the array values indexed 0 up to but not 
including size.  We call swapMinToFront for start having the values 0, 1, 2, 3, etc., 
stopping when start is size-1.  The logic is in Listing 13.1.   
 
 
Listing 13.1  The selectionSort method for a partially-filled array, in CompOp 
 
 /** Precondition:  size <= item.length; item[0]...item[size-1] 
  *  are non-null values all Comparable to each other. 
  *  Postcondition: The array contains the values it initially 
  *  had but with item[0]...item[size-1] in ascending order. */ 
 
 
 public static void selectionSort (Comparable[] item, int size) 
 { for (int k = 0;  k < size - 1;  k++) 
   swapMinToFront (item, k, size - 1); 
 } //======================= 
 
 
 private static void swapMinToFront (Comparable[] item,  
                                     int start, int end) 
 { int indexSmallest = start; 
  for (int k = start + 1;  k <= end;  k++) 
  { if (item[k].compareTo (item[indexSmallest]) < 0) 
    indexSmallest = k; 
  } 
  Comparable saved = item[start]; 
  item[start] = item[indexSmallest]; 
  item[indexSmallest] = saved; 
 } //======================= 
 
 
This method might be called from the WorkerList class of Section 7.6 (whose instance 
variables are a partially-filled array itsItem of Worker objects and an int value 
itsSize saying how many values in itsItem are useable) using this statement: 
 
 CompOp.selectionSort (this.itsItem, this.itsSize); 
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An example of an independent class method that calls on the selectionSort method 
to sort 3000 randomly-chosen decimal numbers, then prints the sorting time in seconds 
and returns the median value, is the following.  It uses the Double methods described in 
Section 11.4, though all you need to know about them for this chapter is the following:   
 
• new Double(x) creates an object with an instance variable storing the double x,  
• someDouble.doubleValue() returns the double value of the Double object, and 
• the Double class implements the Comparable interface, having compareTo. 
 
 public static double median()        // independent 
 { final int numToSort = 3000; 
  Double[] item = new Double [numToSort]; 
  for (int k = 0;  k < numToSort;  k++) 
   item[k] = new Double (Math.random()); 
  long t = System.currentTimeMillis(); 
  selectionSort (item, numToSort); 
  System.out.println ((System.currentTimeMillis() - t)/1000); 
  return item[numToSort / 2].doubleValue(); 
 } //======================= 
 
Exercise 13.1  Revise Listing 13.1 to perform a SelectionSort on a null-terminated array:  
You have only the item array parameter, no size.  You are to sort all values up to the 
first one that is null.  Precondition:  At least one component contains null. 
Exercise 13.2  Revise Listing 13.1 to put the values in descending order. 
Exercise 13.3* Rewrite Listing 13.1 to find the largest value each time and swap it to the 
rear of the array.  
Exercise 13.4*  Rewrite Listing 13.1 to omit swapping when the smallest is already at the 
front.  Does this speed up or slow down the execution? 
 
 

13.2 The InsertionSort Algorithm For Comparable Objects 
 
The InsertionSort is another standard sorting algorithm.  As a warmup, start with this 
problem:  If you know that the first m values in an array are already in ascending order, 
but the next one (at item[m]) is probably out of order, how would you get them all in 
order?  The accompanying design block is a plan for the solution. 
 

DESIGN to re-order values 
1. Set the value from item[m] aside, thereby leaving an empty spot in the array. 
2. Compare the value before the empty spot with the value you set aside.   
 If the value before the empty spot is larger, then... 
   2a. Move that value into the empty spot, so where it came from  
    is now empty. 
   2b. Repeat from Step 2. 
3. Put the value you set aside in the empty spot. 

 
This logic is defective:  What if all of the values are larger than the one you set aside?  
You have to stop when the empty spot is at the very front of the array, i.e., item[0].  
Making this adjustment, the following method solves the problem.  
 
 private static void insertInOrder (Comparable[ ] item, int m) 
 { Comparable save = item[m]; 
  for (;  m > 0 && item[m - 1].compareTo (save) > 0;  m--) 
   item[m] = item[m - 1]; 
  item[m] = save; 
 } //======================= 
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The InsertionSort Algorithm 
 
Now that you have had a warmup, you can look at the second standard algorithm to put 
the array values in ascending order.  This algorithm is the InsertionSort Algorithm.  The 
plan is as follows (see the illustration in Figure 13.3): 
 
1. Put the first two values in order. 
2. Insert the third value in its proper place in the sequence formed by the first two. 
3. Insert the fourth value in its proper place in the sequence formed by the first three. 
4. Insert the fifth value in its proper place in the sequence formed by the first four. 
5. Keep this up until you have them all in order. 
 
 
Suppose the values stored in the array are initially: 12 7 8 5 13 6 9 
Step 1:  Put the first two values in order: 7 12 " " " " " 
Step 2:  Insert the third in order among the first two: 7 8 12 " " " " 
Step 3:  Insert the fourth in order among the first three: 5 7 8 12 " " " 
Step 4:  Insert the fifth in order among the first four: 5 7 8 12 13 " " 
Step 5:  Insert the sixth in order among the first five: 5 6 7 8 12 13 " 
Step 6:  Insert the seventh in order among the first six: 5 6 7 8 9 12 13 
 
 Figure 13.3  Sequence of operations for the InsertionSort 
 
 
You will have noticed that the logic needed for each of Steps 2, 3, 4, etc. is in the 
insertInOrder method just developed.  In fact, it can be used for Step 1 as well 
(calling the method with m == 1).  The complete InsertionSort algorithm is coded in 
Listing 13.2.  The precondition and postcondition are the same as for Listing 13.1. 
 
 
Listing 13.2  The insertionSort method for a partially-filled array, in CompOp 
 
 /** Precondition:  size <= item.length; item[0]...item[size-1] 
  *  are non-null values all Comparable to each other. 
  *  Postcondition: The array contains the values it initially 
  *  had but with item[0]...item[size-1] in ascending order. */ 
 
 
 public static void insertionSort (Comparable[] item, int size) 
 { for (int k = 1;  k < size;  k++) 
   insertInOrder (item, k); 
 } //======================= 
 
 
 private static void insertInOrder (Comparable[] item, int m) 
 { Comparable save = item[m]; 
  for (;  m > 0 && item[m - 1].compareTo (save) > 0;  m--) 
   item[m] = item[m - 1]; 
  item[m] = save; 
 } //======================= 

 
 
Some people want to put at the beginning of the insertionSort method a test to 
save time when the size is 0, beginning the coding with the phrase if (size > 0).  
However, that would violate the Principle of Rara Avis:  It is less efficient to speed up 
execution in cases that rarely occur (i.e., cases that are "rare birds", thus the "rara avis") 
if that slows down execution in the vast majority of cases. 
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Contrasting the two sorting algorithms 
 
At each call of insertInOrder, the list of values is actually two lists:  The "bad list", 
which is all the unsorted values indexed k and higher, versus the "good list" of sorted 
values at indexes 0..k-1.  Each call of insertInOrder increases by 1 the number 
of items in the good list and consequently decreases by 1 the number of items in the bad 
list.  When the InsertionSort finishes, the entire list is the good list, i.e., it is sorted. 
 
For the SelectionSort, the bad list is also the unsorted values indexed k and higher, and 
the good list of sorted values is at indexes 0..k-1.  Each call of swapMinToFront 
increases by 1 the number of items in the good list and consequently decreases by 1 the 
number of items in the bad list.  When the SelectionSort finishes, the entire list is the 
good list, i.e., it is sorted. 
 
Both algorithms gradually transform the bad into the good, one value at a time.  The way 
they transform differs, but the overall effect is the same:  What was originally all bad 
(unsorted) is at the end all good (sorted). 
 
The difference between them can be described this way:  The SelectionSort logic slowly 
selects a value (the smallest) from the bad list so it can quickly put it on the end of the 
good list (by a simple swap).  The InsertionSort logic quickly selects a value (the first one 
available) from the bad list so it must slowly put it where it goes within the good list (by a 
careful insertion process). 
 
Loop invariants verify that the algorithms work right 
 
A loop invariant is a condition that is true every time the continuation condition of a 
looping statement is evaluated.  For these two sorting algorithms, a loop invariant tells 
what it means to be a "good" list: 
 
Loop invariant for the main loop of insertionSort (any time at which the loop 
condition k < size is evaluated):  The values in item[0]...item[k-1] are in 
ascending order and are the same values that were originally in item[0]...item[k-1]. 
 
How do we know this condition is in fact true every time k < size is evaluated?  It 
depends on two facts that you can easily check out: 
 
1. The first time k < size is evaluated, k is 1, so item[0]...item[k-1] contain only 

one value, so they are by definition in ascending order.  
2. If at any point when k < size is evaluated, item[0]...item[k-1] are in ascending 

order and are the values that were originally there, then one iteration of the loop 
shifts the last few values up by one component and inserts item[k] into the place 
that was vacated by the shift, immediately after the rightmost value that is less than 
or equal to item[k].  So item[0]..item[k] are now in ascending order and are the 
values that were originally in components 0 through k.  Then, just before testing   
k < size again, k is incremented, which means that the invariant condition is 
again true:  item[0]...item[k-1] are the original first k values in ascending order. 

 
Once you see that both of those assertions are true, you should be able to see that 
together they imply that the loop invariant is true when the loop terminates:  
item[0]...item[k-1] are in ascending order and are the original first k values.  But at that 
point, k is equal to size, which means that item[0]...item[size-1] are in ascending order 
and are the original size values.  Conclusion:  The insertionSort coding sorts the 
values in the partially-filled array. 
 
The same pattern of reasoning can be applied to verify that the selectionSort 
coding in the earlier Listing 13.1 actually sorts the values given it: 
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Loop invariant for the main loop of selectionSort (any time at which the loop 
condition k < size-1 is evaluated): The values in item[0]...item[k-1] are in 
ascending order and are the k smallest values that were originally in 
item[0]...item[size-1]. 
 
How do we know that condition is in fact true every time k < size-1 is evaluated?  It 
depends on two facts that you can easily check out: 
 
1. The first time k < size-1 is evaluated, k is zero, so item[0]...item[k-1] contain no 

values at all, so they are the 0 smallest values in ascending order (vacuously).  
2. If at any point when k < size-1 is evaluated, item[0]...item[k-1] are the k 

smallest of the original values in ascending order, then one iteration of the loop finds 
the (k+1)th smallest of the original values and puts it after the k smallest values.  So 
item[0]...item[k] are now in ascending order and are the k+1 smallest values that 
were originally in the array.  Then, just before testing k < size-1 again, k is 
incremented, which means that the invariant condition is again true: item[0]...item[k-1] 
are the k smallest of the original values in ascending order. 

 
Once you see that both of those assertions are true, you should be able to see that 
together they imply that the loop invariant is true when the loop terminates:  
item[0]...item[k-1] are the k smallest of the original values in ascending order.  But at 
that point, k is equal to size-1, which means that item[0]...item[size-2] are in 
ascending order and are all but the largest of the original values.  Conclusion:  The 
selectionSort algorithm sorts the values in the partially-filled array. 
 
As a general principle, when you have a complex looping algorithm and you want to 
verify that it produces a given result under any and all conditions, proceed as follows:  
Find a condition that is trivially true the first time the loop condition is evaluated, and is 
"incrementally true" for the loop (i.e., if true at the time of one evaluation, it is true at the 
time of the next evaluation), so you can inductively deduce that it will be true when the 
loop terminates.  If you have chosen the condition well, its truth when the loop terminates 
will be an obvious proof that the loop produces the required result.  
 
A game example  You play a two-person game in which you are to lay out more than 40 
counters and your opponent has the first move.  Each move is to take 1, 2, or 3 counters.  
The person who takes the last counter wins.  So you are executing the loop while 
(counters left) {opponent moves; you move;} whose long-term objective is 
to take the last counter.  You can assure this by establishing a short-term objective on 
each iteration that your move leaves a multiple of 4 counters.  This is the loop invariant.  
So initially you choose to lay out 44 or 48 or 52... counters.  For each of your moves, you 
leave 4 fewer counters than you left on the turn before.  Then you will win. 
 
Exercise 13.5  Rewrite insertInOrder in Listing 13.2 to check whether the value to 
be set aside is in fact smaller than the one in front of it; if not, do not set it aside.  Does 
this speed up or slow down the algorithm? 
Exercise 13.6  Revise Listing 13.2 to perform an InsertionSort on a null-terminated array: 
You have only the item parameter, no size.  You are to sort all values up to the first 
one that is null.  Precondition:  At least one component contains null. 
Exercise 13.7  Revise Listing 13.2 to perform an InsertionSort on an array of doubles. 
Exercise 13.8  Revise Listing 13.2 to allow for null values scattered throughout the array.  
A null value is to be considered larger than any non-null value. 
Exercise 13.9*  Rewrite Listing 13.2 to perform the insertion from the other end of the 
array.  That is, put the top 2 in order, then the top 3, then the top 4, etc. 
Exercise 13.10*  The loop condition in insertInOrder makes two tests each time 
through.  Rewrite the method to execute faster by making only one test on each iteration, 
as follows: If item[0] is not larger than save, have a faster loop to insert save 
where it goes, otherwise have a separate loop to insert save at the front of the array. 
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13.3 Big-oh And Binary Search 
 
Why have two or more different sorting methods?  Because one may be better for one 
purpose and another may be better for a different purpose.  We will now look at the 
execution time of the two elementary algorithms you have seen so far. 
 
Counting the comparisons made for elementary sorting 
 
When you study the logic in Listing 13.2, you should be able to see that a call of 
insertInOrder with k as the second parameter could make anywhere from 1 to k 
comparisons. So if N denotes the total number of items to be sorted, the InsertionSort 
could make as many as 1 + 2 + 3 + ... + (N-1) comparisons of data altogether 
before it gets them all in order.  That adds up to (N-1)*N/2, using basic counting 
methods, i.e., almost half of N-squared.  In effect, each of the N items could be 
compared with each of the other (N-1) items before the sorting is done. 
 
If you look back at the logic in the earlier Listing 13.1, you will see that the first time you 
call swapMinToFront, when k is zero, you will make N-1 comparisons.  The second 
time you will make N-2 comparisons.  This continues until k is the index of the next-to-
last value, which requires only one comparison.  So the total number of comparisons is  
1 + 2 + 3 +...+(N-1), i.e., (N-1)*N/2. 
 
The (N-1)*N/2 comparisons that the InsertionSort could make is the worst case; the 
average should be somewhere around one-quarter of N-squared.  The SelectionSort 
always takes almost one-half of N-squared comparisons, but it usually has much less 
movement of data than the InsertionSort.  Which is faster depends on the time for a 
comparison versus the time for a movement of data, but it is usually the InsertionSort. 
 
Both the InsertionSort and the SelectionSort are called elementary sorting algorithms.  
"Elementary" means that the number of comparisons made in the process of sorting N 
items is on average a constant multiple of N-squared.  The multiple for InsertionSort is ¼ 
and the multiple for SelectionSort is ½.  There are other elementary sorting algorithms; 
the first one invented for computer programs was probably the one called the BubbleSort.  
But it executes more slowly than the two described here.  A SelectionSort variation, 
based on finding both the maximum and the minimum on each pass through the data, is 
described in the appendix of major programming projects; its multiple is 3/8. 
 
The technical way of saying this is that the big-oh behavior of elementary sorts is N-
squared, where N is the number of items to be sorted.  It means that, if it takes X amount 
of time to sort a certain number of items, then it takes roughly 4X amount of time to sort 
twice as many items, and it takes roughly 100X amount of time to sort ten times as many 
items, at least if X is fairly large.  In general, the amount of time to do the job is roughly 
proportional to the square of the number of items to be processed, for large values of N. 
 
To see this, suppose you have a processor that takes 1 second to sort 1000 items.  That 
1 second is what you need for roughly M times 1 million comparison operations, where M 
is the multiplier for the elementary sort (M == ¼ for the InsertionSort, M == ½ for the 
SelectionSort) and 1 million is the square of 1000.  To sort 2000 items requires M times 4 
million comparisons, which is four times as long as for sorting 1000 items.  To sort 10,000 
items requires M times 100 million comparisons, which is 100 times as long as for sorting 
1000 items.   
 
In particular, it would take a thousand-squared seconds to sort one million items, which is 
over eleven days.  This is not practical.  The next two sections discuss far faster 
algorithms for sorting, on the order of big-oh of N times log(N).  But first we look at an 
algorithm for searching an array and its execution time. 
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Binary Search 
 
A key algorithm for searching an array for a target value when the array is already sorted 
in ascending order is called Binary Search.  The logic of a Binary Search Algorithm to 
find whether the target value is present is:  The target value, if it is in the array, must be in 
the range from the lowerBound of 0 to the upperBound of size-1, inclusive.  First 
look at the value at the middle component item[midPoint].  If that is less than the 
target value, the target can only be above that component, because the values are sorted 
in ascending order; so the revised lowerBound is midPoint+1.  On the other hand, if 
item[midPoint] is not less than the target value, the target must be in the range from 
lowerBound to midPoint, inclusive; so the revised upperBound is midPoint. 
 
Whichever of the two cases apply, you have cut the number of possibilities about in half.  
This process can be repeated until lowerBound is equal to upperBound.  At that point, 
the target value must be in the only component in that range, if it is in the array at all.  
 
Figure 13.4 illustrates a search for the value 40 in an ordered array of 16 values.  Initially 
lowerBound is 0 and upperBound is 15 (listed in the first two columns), so midPoint 
is 7 (in the third column).  40 is greater than item[7] (boldfaced in the figure) so we set 
lowerBound to 8.  Now midPoint is 11 and 40 is not greater than item[11], so we 
set upperBound to 11.  This continues until we isolate the value in item[10]. 
 
 
lB uB m 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
0 15 7 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 
8 15 11         36 38 40 42 44 46 48 50 
8 11 9         36 38 40 42     
10 11 10           40 42     
10 10            40      
 
 Figure 13.4  Finding the value 40 in an array of 16 values 
 
 
This logic expressed in Java is in Listing 13.3.  The coding includes an extra test to make 
sure size is positive before beginning the subdivision process. 
 
 
Listing 13.3  The binarySearch method for an ordered partially-filled array 
 
 /** Precondition:  item[0]...item[size-1] are all non-null, 
  *  in ascending order, and Comparable with target. 
  *  Returns: whether target is one of the array values. */ 
 
 
 public static boolean binarySearch (Comparable[] item,  
                           int size, Comparable target) 
 { if (size <= 0)                                         //1 
   return false;                                       //2 
  int lowerBound = 0;                                    //3 
  int upperBound = size - 1;                             //4 
  while (lowerBound < upperBound)                        //5 
  { int midPoint = (lowerBound + upperBound) / 2;       //6 
   if (item[midPoint].compareTo (target) < 0)          //7 
    lowerBound = midPoint + 1;                       //8 
   else                                                //9 
    upperBound = midPoint;                           //10 
  }                                                      //11 
  return item[lowerBound].equals (target);               //12 
 } //======================= 
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Counting the comparisons made for BinarySearch 
 
If the number of items to be searched is 1000, then you only need eleven comparisons to 
find out whether the target value is in the array.  This is because, when you start from 
1000 and repeatedly divide by 2, you reduce it to just one possibility in only 10 iterations; 
the eleventh comparison is to find out whether that one possibility is the target value.   
 
The number of times you divide a number by 2 to get it down to 1 is its logarithm base 2 
(more precisely, it is the logarithm after rounding up if needed).  Call this rounded-up 
number log2(N). log2(1000) is 10, so binary search of a thousand items only 
requires 11 comparisons.  Similarly, log2(1,000,000) is 20, so binary search of a 
million items only requires 21 comparisons.  And log2(1,000,000,000) is 30, so 
binary search of a billion items only requires 31 comparisons.  Note that in Java, log2(N) 
is the same as Math.ceil (Math.log(N) / Math.log(2)). 
 
The big-oh  
 
In general, if N is the number of items to be searched, then the Binary Search Algorithm 
requires log2(N)+1 comparisons to find out whether a particular target value is there. 
The technical way of saying this is that the big-oh behavior of binary search is log(N), 
where N is the number of items to be searched.  It means that the amount of time to do 
the job is roughly proportional to the logarithm of the number of items to be processed, 
for large values of N. A useful loop invariant for the binarySearch method is the following: 
 
Loop invariant for the one loop in binarySearch (any time at which the loop 
condition lowerBound < upperBound is evaluated):  The target value is in 
item[lowerBound]...item[upperBound] or else is not in the array at all. 
 
By contrast, the sequential search algorithm that you have seen many times before 
looks at potentially every element in the list.  The big-oh behavior of sequential search 
is N:  the amount of time to do the job is roughly proportional to the number of items to be 
processed, for large values of N. 
 
Exercise 13.11  The binarySearch logic divides the possibilities up into two parts, 
but they are not always the same size.  When is one part larger by one item?  Which part 
of the array is larger in that case, the front or the rear half? 
Exercise 13.12  Explain what Exceptions could be thrown, and when, if the initial 
statement testing size were omitted from the coding of binarySearch. 
Exercise 13.13  A method makes a copy of an array parameter by creating a new array 
of the same size and assigning each value in the given array to the new array.  What is 
the big-oh execution time for this method? 
Exercise 13.14 (harder)  In the binarySearch method, what would be the 
consequence of rounding off midPoint in the other direction from what is done in 
Listing 13.3 (i.e., what Exceptions could be thrown or other problems occur)? 
Exercise 13.15*  Rewrite the binarySearch method to check to see whether 
item[midPoint] actually equals the target value each time and, if so, to stop the 
process early.  Then explain why this slows execution on average. 
Exercise 13.16*  Revise the binarySearch method to return an int value:  Return the 
index where the target was found, except return a negative int -n-1 if the target is not 
in the array (n is the index where target should be inserted to keep all values in order). 
Exercise 13.17**  Write a binarySearch method for a null-terminated array with 
execution time big-oh of log(L) where L is the length of the array. 
Exercise 13.18**  Write out logical reasoning to verify that the loop invariant for 
binarySearch is trivially true at the first test and incrementally true for each iteration. 
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Part B  Enrichment And Reinforcement 
 

13.4 The Recursive QuickSort Algorithm For Comparable Objects 
 
People have made attempts to improve on the speed of the elementary sorting 
algorithms of SelectionSort and InsertionSort.  One idea is the QuickSort logic, which the 
accompanying design block describes, assuming you create a QuickSorter object whose 
job it is to sort the elements of an array. 
 
 

DESIGN for the sorting logic of a QuickSorter object 
If you have at least two elements to sort in ascending order, then... 
 1. Choose one of the elements of the array at random; call it the pivot. 
 2. Move everything smaller than the pivot towards the front of the array. 
 3. Move everything larger than the pivot towards the rear of the array. 
 4. Put the pivot in the component between those two groups of elements. 
 5. Sort the values before the pivot. 
 6. Sort the values after the pivot. 

 
 
Why this is almost always faster 
 
Let us compare this logic with that of the InsertionSort.  Say you find insertionSort 
takes 800 milliseconds to sort 2000 items using a particular processor.  Since it makes 
1999 passes through the data, calling insertInOrder each time, the calls of 
insertInOrder take 0.4 milliseconds each on average.  The average call of 
insertInOrder inserts a value into about 1000 items and makes about 500 
comparisons to do so.  Therefore, since steps 1 through 4 of the QuickSort logic make 
1999 comparisons, that must take under 2 milliseconds. 
 
Suppose that steps 5 and 6 called insertionSort instead of using another QuickSort 
logic, once for the half that are smaller than the pivot and once for the half that are larger.  
Then each call would take about 200 milliseconds, one quarter of the 800 milliseconds  
for sorting 2000, since the execution time of insertionSort is roughly proportional to 
the square of the number of items sorted.  So altogether the QuickSort logic would take 
2+200+200 = 402 milliseconds instead of 800 milliseconds.  And that is assuming it 
switches to the insertionSort logic for steps 5 and 6.  If it continued with the 
QuickSort logic, the improvement in speed would be far greater. 
 
You probably noticed a big IF in that logic:  If the pivot turns out to divide the values 
roughly in half, it almost doubles the speed.  But the pivot is chosen at random, so it may 
be very close to one end or the other of the range of values.  That would make the 
execution time much the same as the InsertionSort. 
 
This is the drawback to the QuickSort:  If the pivot is one of the five or so smallest values, 
or one of the five or so largest values, the vast majority of the time the pivot is chosen, 
then the QuickSort can take a little longer than the InsertionSort.  But that is extremely 
rare for randomly-ordered data.  The QuickSort will almost always drastically speed up 
the sorting process relative to the InsertionSort.  An exercise has you implement a "tune-
up" in which you select the middle of three values taken from the bottom, the top, and 
the middle of the array.  This virtually guarantees a drastic speed-up. 
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Recursion 
 
A single method may be called many times at different points during the execution of the 
program.  Each of these calls is a different activation of the method.  The runtime 
system records information about each activation in separate "method objects" that it 
creates and discards during execution of the program.  You must keep this point firmly in 
mind when thinking about recursion: A method is allowed to contain a call of itself.  The 
QuickSort logic described earlier requires the use of recursion.   
 
As an example of recursion, the insertionSort method could have been written 
recursively as follows (though we normally do not do this where a simple for-statement 
accomplishes the same thing): 
 
 public static void insertionSort (Comparable[] item, int size) 
 { if (size > 1) 
  { insertionSort (item, size - 1);                //recur 
   insertInOrder (item, size - 1); 
  } 
 } //======================= 
 
For that matter, the selectionSort method could have been written recursively if we 
had chosen to have a swapMaxToRear method that swaps the largest value to the rear 
of the array instead of a swapMinToFront method that swaps the smallest value to the 
front of the array: 
 
 public static void selectionSort (Comparable[] item, int size) 
 { if (size > 1) 
  { swapMaxToRear (item, 0, size - 1); 
   selectionSort (item, size - 1);                //recur 
  } 
 } //======================= 
 
Say you want to print out all the 6-digit binary numbers (all 64 of them).  Then a call of 
printBinary ("", 6) does the job if you have method shown in Listing 13.4.  Study 
it for a while to see that it prints out every binary number that has numDigits digits, 
each one prefixed by the given String prefix: 
 
Listing 13.4  The independent printBinary method 
 
 /** Print every binary number of numDigits digits. */ 
 
 public static void printBinary (String prefix, int numDigits) 
 { if (numDigits <= 1) 
   System.out.println (prefix + "0\n" + prefix + "1"); 
  else 
  { printBinary (prefix + "0", numDigits - 1);      //recur 
   printBinary (prefix + "1", numDigits - 1);      //recur 
  } 
 } //======================= 

 
If you try to do that with a while-statement, it will not be nearly as compact and clear.  In 
the three methods just given, each expression that makes a recursive call has this 
hallmark property:   
 
(a) it is guarded by a test that a certain variable, called the recursion-control variable, 

is greater than a certain cutoff amount, and  
(b) it passes to the new activation a value of the recursion-control variable that is at least 

1 smaller than the existing activation has. 
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In the three examples just given, the expression that makes the recursive call is marked 
//recur out at the side: 
 
• For insertionSort, the recursion-control variable is size and its cutoff is 1. 
• For selectionSort, the recursion-control variable is size and its cutoff is 1. 
• For printBinary, the recursion-control variable is numDigits and its cutoff is 1. 
 
In some applications of recursion, the coding itself does not declare a variable specifically 
as the recursion-control variable.  But any coding that uses recursion properly will involve 
a quantity that could be assigned to a recursion-control variable if need be.   
 
Of course, it is possible to write recursive coding that falls into an "infinite loop" because it 
does not have a recursion-control variable.  But then again, it is also possible to write a 
while-statement that falls into an "infinite loop" because it does not have an "iteration-
control variable" that eventually reaches a certain cutoff and terminates the loop. 
 
It is the recursion-control variable and the cutoff value that guarantee that recursion does 
not go on forever.  Think of each activation of the method as being a certain height above 
the floor.  The recursion-control variable measures the height above the floor.  Each time 
you step from one activation to another, the height drops.  When you spiral down to the 
floor (the cutoff value), the recursion stops. In short, a correctly coded recursion process 
does not go in circles, it goes in spirals. 
 
Object design 
 
A reasonable approach is to create a QuickSorter object, giving it the array that contains 
the values to be sorted.  Then you can ask it to sort one part or another part of the array.  
So the primary message sent to a QuickSorter object should be as follows, where 
start and end are the first and last indexes of the part of the array to be sorted: 
 
 someQuickSorter.sort (start, end); 
 
The object responds to the sort message by first making sure that it has at least two 
values to sort, i.e., that start < end.  If so, it rearranges the values around the pivot, 
then creates another QuickSorter object, its helper, to sort each half.  Since the 
rearranging is rather complex, you could put it off to some other method, which will "split" 
the array in two and report the index where the pivot was put.  That leads to the following 
basic coding for the sort method: 
 
 int mid = this.split (start, end); 
 helper.sort (start, mid - 1); 
 helper.sort (mid + 1, end); 
 
The split method is to split the sortable portion of the array into two parts, those 
below index mid that are smaller than the pivot, and those above index mid that are 
larger than the pivot.  The QuickSorter object's helper then sorts each part separately.  
This overall logic is illustrated in Figure 13.5. 
 
1. The initial array 7 12 5 10 3 6 8 
2. Remove the pivot 7 X 12 5 10 3 6 8 
3. Split, smaller below, larger above 6 3 5 X 10 12 8 
4. Put the pivot back in the middle 6 3 5 7 10 12 8 
5. Sort the ones smaller than 7 3 5 6 7 10 12 8 
6. Sort the ones larger than 7 3 5 6 7 8 10 12 
 
Figure 13.5  The overall logic of the QuickSort 
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Development of the split method 
 
Splitting the portion of the array in parts smaller than and larger than a pivot value is 
tricky.  Call the lowest and highest indexes for the range lo and hi.  They are 
initialized to the start and end values, but lo and hi will change during the logic 
whereas start and end will stay their original values.  So it will be less confusing to 
have different names. 
 
Take the pivot value from itsItem[lo] (an exercise improves this to a random choice; 
then the algorithm is called randomized QuickSort).  That leaves the component empty.  
What should go there at the lower part of the array?  An element that is smaller than the 
pivot.  And where should you take it from?  From where it should not be, namely, the 
higher part of the array.  So look at itsItem[hi] to see if that is smaller than the 
pivot.  Say it is not.  Then itsItem[hi] is in the right place, so decrement hi and 
look at itsItem[hi], which is the one below the original hi one.  Say that one is 
smaller than the pivot.  So you move the contents of itsItem[hi] down to the empty 
spot itsItem[lo], which leaves itsItem[hi] empty. 
 
What should go into itsItem[hi], in the higher part of the array?  An element that is 
larger than the pivot.  And where should you take it from?  From where it should not be, 
namely, the lower part of the array.  You start looking at itsItem[lo+1].  So you 
increment lo to keep track of the position in the lower part of the array.  Keep 
incrementing lo until you get to a component that has a larger value than the pivot.  
Move that value up into the empty spot at itsItem[hi].  Then go back to looking in 
the higher part of the array for a value to move into the now-empty spot itsItem[lo]. 
 
You actually do not need multiple QuickSorter objects; just one can do the entire job 
itself.  Listing 13.5 (see next page) makes this adjustment, which speeds up execution. 
Study the complete coding in Listing 13.5 until you understand everything about it. 
 
It keeps track of whether you are looking in the higher part of the array (versus the lower 
part) with a boolean variable lookHigh (line 7).  When lookHigh is true, you are 
decrementing hi in the higher part of the array until you find a smaller value than the 
pivot, which you then move into the empty itsItem[lo] (line 13).  When lookHigh is 
false, you are incrementing lo in the lower part of the array until you find a larger value 
than the pivot, which you then move into the empty itsItem[hi] (line 21).   
 
This coding uses a language feature not used in any other chapter:  The phrase 
itsItem[lo++]= in line 13 assigns a value to itsItem[lo] and thereafter 
increments lo.  In general, the value of the expressions x++ and x-- is the value 
that x had before it incremented or decremented.  Thus itsItem[hi--] in line 21 
assigns a value to itsItem[hi] and thereafter decrements hi.  If you use this 
shorthand feature, follow this safety rule:  Never use it in a statement that mentions the 
incremented/decremented variable (lo or hi or whatever) more than once.  The 
reason is that its value is very tricky to figure out in such a case. 
 
The loop invariant 
 
When lo and hi coincide, you have found the empty spot where the pivot should go.  
You can verify that the loop in the split method does what it should do by checking 
that the following statement is a loop invariant: 
 
Loop invariant for the while loop in split (any time the loop condition lo < hi 
is evaluated):  No value from start through lo-1 is larger than the pivot and no 
value from hi+1 through end is smaller than the pivot.   Also, itsItem[lo] is 
"empty" if lookHigh is true, but itsItem[hi] is "empty" if lookHigh is false. 
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Listing 13.5  The QuickSort Algorithm for a partially-filled array 
 
// a method in the CompOp class; same conditions as Listing 13.1 
 public static void quickSort (Comparable[] item, int size) 
 { new QuickSorter (item).sort (0, size - 1); 
 } //======================= 
 
 
public class QuickSorter 
{ 
 private Comparable[] itsItem; // the array to be sorted 
 
 public QuickSorter (Comparable[] item) 
 { itsItem = item; 
 } //======================= 
 
 /** Precondition: start <= end; itsItem[start]...itsItem[end] 
  *  are the Comparable values to be sorted. */ 
 
 public void sort (int start, int end) 
 { if (start < end)                                       //1 
  { int mid = split (start, end);                       //2 
   sort (start, mid - 1);                              //3 
   sort (mid + 1, end);                                //4 
  }                                                      //5 
 } //======================= 
 
 private int split (int lo, int hi) 
 { Comparable pivot = itsItem[lo];                        //6 
  boolean lookHigh = true;                               //7 
  while (lo < hi)                                        //8 
  { if (lookHigh)                                       //9 
   { if (itsItem[hi].compareTo (pivot) >= 0)          //10 
     hi--;                                         //11 
    else                                             //12 
    { itsItem[lo++] = itsItem[hi];                  //13 
     lookHigh = false;                             //14 
    }                                                //15 
   }                                                   //16 
   else                                                //17 
   { if (itsItem[lo].compareTo (pivot) <= 0)          //18 
     lo++;                                         //19 
    else                                             //20 
    { itsItem[hi--] = itsItem[lo];                  //21 
     lookHigh = true;                              //22 
    }                                                //23 
   }                                                   //24 
  }                                                      //25 
  itsItem[lo] = pivot;                                   //26 
  return lo;                                             //27 
 } //======================= 
} 
 
 
By "empty" we mean that you may overwrite that value without losing any value that was 
in the original portion of the array to be sorted.  In Figure 13.6, the X marks the 
component that is "empty".  The positions of lo and hi after the action described at 
the left of Figure 13.6 are boldfaced so you can track their movements.  On each iteration 
of the loop, one or the other moves one step closer to the middle. 
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Initially lo=20 and hi = 26:  20 21 22 23 24 25 26 
The array values are: (boldfaced at lo and at hi) 7 12 5 10 3 6 8 
First:  Take the pivot from index lo, so pivot is 7: X 12 5 10 3 6 8 
Iteration 1: lookHigh is true but itsItem[hi]>pivot so hi--: X 12 5 10 3 6 8 
Iteration 2: lookHigh is true, itsItem[hi]<pivot so move: 6 12 5 10 3 X 8 
Iteration 3: lookHigh is false, itsItem[lo]>pivot so move: 6 X 5 10 3 12 8 
Iteration 4: lookHigh is true, itsItem[hi]<pivot so move: 6 3 5 10 X 12 8 
Iteration 5: lookHigh is false, itsItem[lo]<pivot so lo++: 6 3 5 10 X 12 8 
Iteration 6: lookHigh is false, itsItem[lo]>pivot so move: 6 3 5 X 10 12 8 
Now lo == hi, so X marks the spot where pivot goes: 6 3 5 7 10 12 8 
 
 Figure 13.6  Sequence of operations for the split method 
 
 
The split method in the QuickSort logic can be used to solve a problem that arises in 
practice from time to time:  Given a large number of values in an array, find the Kth 
smallest, e.g., the 575th smallest or the 2300th smallest.  Once you split the array to find 
the correct position of the pivot, you calculate whether that position is above or below the 
Kth position.  Then you re-split the one part of the array that contains the Kth position.  
This QuickSelect problem is left as a major programming project. 
 
Language elements  
For any int variable k, k++ has the value that k had before it was incremented.  Similarly, k-- 
evaluates as the value k had before it was decremented.  So if k is 4, then k++ is 4 and k-- is 4. 
On the other hand, ++k yields the value k had after incrementing and --k yields the value that k 
had after decrementing.  Examples:  If k is 4, then ++k is 5 and --k is 3. 
This compactness comes with an increased risk of getting the logic wrong.   
It is most dangerous if you mention k anywhere else in the same statement. 
 
Exercise 13.19  Trace the action of the split method on the sequence {7, 2, 9, 1, 5, 
8, 4} in the way shown in Figure 13.6. 
Exercise 13.20  Revise the QuickSorter class to put values in descending order rather 
than in ascending order. 
Exercise 13.21  What is the sequence of all pivot values used by all calls of quickSort 
if the initial call is for the sequence {4, 1, 8, 3, 9, 5, 6, 2, 7}.  Hint:  There are five of them. 
Exercise 13.22  What difference would it make if you replaced ">= 0" by "> 0" and 
replaced "<= 0" by "< 0" in the split method? 
Exercise 13.23 (harder)  (a) Rewrite the split method to take the pivot from index 
hi instead of index lo.  (b) Same problem, but take it from a random index lo to hi. 
Exercise 13.24 (harder)  Explain why the loop invariant is trivially true at the first test of 
the loop condition. 
Exercise 13.25*  Explain why the loop invariant is incrementally true for each iteration. 
Exercise 13.26*  What difference would it make if the >= and <= operators were 
replaced by > and < respectively in the split method? 
Exercise 13.27*  Rewrite the quickSort and sort methods so that the sort 
method is never called when there are less than two items to sort.  Is this more efficient? 
Exercise 13.28*  Rewrite the split method to find a pivot value that is much more 
likely to be close to the middle, as follows:  Compare the three values at indexes lo, 
hi, and (lo+hi)/2.  Whichever of them is between the other two is to be the pivot.  
Exercise 13.29*  Write an InsertionSorter class of objects analogous to QuickSorter.  
This would allow people to use the InsertionSort logic for any subsequence of an array, 
not just starting from zero.  Extra credit:  Revise QuickSorter to call an InsertionSorter 
object to do the sorting when it is given 10 items to sort or less. 
Exercise 13.30**  Rewrite the split method so that the body of the while-statement 
contains two additional while-statements, one whose only subordinate statement is hi++ 
and the other whose only subordinate statement is lo--.  This lets you eliminate the 
lookHigh variable entirely.  Does this re-coding make it execute faster or slower?  
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13.5 The Recursive MergeSort Algorithm For Comparable Objects 
 
The irritating thing about the QuickSort algorithm is that it is unreliable.  The vast majority 
of the time, it executes faster than the InsertionSort for a large number of values.  But in 
rare cases it is not significantly faster.  The key to the problem is that the pivot value does 
not always divide the group of values to be sorted in two equal parts.  The MergeSort 
algorithm presented in this section avoids this problem yet executes about as fast.  
 
Putting a mostly sorted group in order 
 
For a warmup, consider this problem:  Somewhere in the item array is a sequence of 
values.  The first half of them are in ascending order and the second half of them are also 
in ascending order.  Your job is to rearrange this sequence so that they are all in 
ascending order. 
 
This could be very messy, swapping values all around, except for one thing:  You get to 
have another array to put the values in as you sort them.  That makes it so much easier. 
Look at a picture to see what is going on:  The upper array in Figure 13.7 has two sub-
sequences of four values, each sequence in ascending order.  The lower array shows 
what the result of the process should be. 

 
 Figure 13.7  Problem:  Move the 8 values into spare in ascending order 
 
 
There are really only two decent ways to go about solving this problem -- working from 
smallest to largest or vice versa.  The accompanying design block describes the former.  
The key point is that the smallest of all of the values must be either the first (smallest) 
value in the lower half or the first (smallest) value in the higher half.  Compare these two 
values.  Whichever is smaller, put that one in the first available spot in the spare array 
and move on to the one after it in its subsequence. 
 

STRUCTURED DESIGN for merging two ascending sequences 
1. Set lo to be the first index of the lower group of ordered values. 
2. Set hi to be the first index of the higher group of ordered values. 
3. Compare the values at lo and hi in the item array to see which is smaller. 
4. If the one at hi is smaller, then.. 
   4a. Move the one at hi to the next available spot in the spare array  
    and increment hi. 
5. Otherwise... 
   5a. Move the one at lo to the next available spot in the spare array  
    and increment lo. 
6. Repeat from Step 3 until you have put all the values into the spare array. 

 
Suppose you have end store the highest index value that hi can have, and have mid 
store the highest index value that lo can have (because it is in the middle of the portion 
to be sorted).  In Figure 13.7, for instance, mid is 24 and end is 28.  Then the 
following coding is a translation of the design.  The conditional test is complex because 
you cannot compare item[lo] with item[hi] unless you make sure that lo has 
not yet gone past mid and that hi has not yet gone past end.  Study the condition so 
you can see why it works. 
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 for (int spot = lo;  spot <= end;  spot++) 
 { if (lo > mid || (hi <= end 
                   && item[lo].compareTo (item[hi]) > 0)) 
   spare[spot] = item[hi++]; 
  else 
   spare[spot] = item[lo++]; 
 } 
 
For Figure 13.7, spot and lo are initially 21 and hi is initially 25.  Compare 4 and 3.  
Since 3 is smaller, the 3 from item[25] moves into spare[21] and hi is increased 
to 26.  Next compare 4 and 6.  Since the 4 is smaller, the 4 from item[21] moves into 
spare[22] and lo is increased to 22.  The rest of this example is left as an exercise. 
 
Loop invariant for the for-loop in the merging process (any time when the loop 
condition spot <= end is evaluated):  If start is the original value of lo, then 
all values in the spare array from index start through index spot-1 are the      
spot-start smallest of the values that are in item[start] through 
item[end], in ascending order. 
 
The MergeSort logic 
 
The idea behind the MergeSort is that you divide the range of values to be sorted into two 
exactly equal parts (or with a difference of 1 if you have an odd number of values).  First 
you sort the first half, next you sort the second half, and finally you merge the two halves 
together as one long sequence in ascending order. 
 
Why is this so much faster than the InsertionSort logic?  Say the InsertionSort takes 800 
milliseconds to sort 2000 items and you decide to do a MergeSort but sort the two halves 
with the InsertionSort logic.  Then, as explained earlier, the InsertionSort will take about 
200 milliseconds to sort the first 1000 items, and about 200 milliseconds to sort the 
second 1000 items, and the MergeSort will take about 2 milliseconds to merge them into 
another array in order.  Total execution time is 402 milliseconds, barely more than half as 
long as using the InsertionSort for all the sorting.  And if the MergeSort logic is used to 
sort each of the two halves, that speeds it up far far more. 
 
This logic does not have the disadvantage that the QuickSort has of sometimes 
degenerating into an elementary sorting algorithm.  But it has a different disadvantage:  It 
requires a second array to get the job done. 
 
The object design 
 
The obvious object design for the MergeSort algorithm is about the same as for the 
QuickSort except you have to make allowance for the second (spare) array.  You need 
the following method in CompOp, to be consistent with the other sorting algorithms: 
 
 public static void mergeSort (Comparable[] item, int size) 
 { Comparable[] spare = new Comparable [item.length]; 
  new MergeSorter (item, spare).sort (0, size - 1); 
 } //======================= 
 
How does the MergeSorter object sort the values?  It first checks that it has at least two 
values to sort, since otherwise it does not need to take any action.  If it has at least two 
values, it creates another MergeSorter object as a helper to sort each half of the array 
separately.  Then it executes the merge logic discussed previously to merge the two 
sorted halves together.  The logic apparently goes something like this: 
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 int mid = (start + end) / 2; 
 helper.sort (start, mid); 
 helper.sort (mid + 1, end); 
 this.merge (start, mid, mid + 1, end); 
 
But now you have a problem.  Since the executor is to leave the values in itsItem 
array, it should merge them from itsSpare array into itsItem array.  That means 
that its helper should leave each of its sorted halves in itsSpare array.  So some 
MergeSorter objects leave the values they sort in itsItem and others leave them in 
itsSpare.  You need some way of telling a MergeSorter object which one it is to do. 
 
The solution, given in Listing 13.6 (see next page), is to have two sort methods, one for 
sorting into itsItem array (lines 1-6) and one for sorting into itsSpare array (lines     
7-14).  A MergeSorter object that is to sort into itsItem array tells its helper to sort into 
itsSpare array so it can merge the two halves back into itsItem.  That helper will tell 
its own helper to sort into itsItem array so it can merge the two halves into 
itsSpare.  This is indirect recursion -- The sort method does not call itself directly, 
it calls the sortToSpare method which calls the sort method. 
 
When a MergeSorter object gets back the two sorted halves, it calls the merge method 
(lines 15-21).  That method's first parameter is the array the values are coming from and 
its second parameter is the array the values are going into.  Some MergeSorter objects 
pass itsItem to the first parameter and others pass itsSpare to the first 
parameter.   
 
You actually do not need multiple MergeSorter objects; just one will do.  Instead of having 
a helper, a MergeSorter object does the whole job itself.  The coding in Listing 13.6 
makes this adjustment, which speeds up execution.  You should study the complete 
coding in Listing 13.6 until you understand everything about it. 
 
Faster sorting with the MergeSort 
 
Every iteration of the loop in the merge method makes four tests, until one of the two 
halves runs out of values.  It would execute faster if it could make just two tests.  A nice 
way to do this is to sort the first half in increasing order and the second half in decreasing 
order.  Then to merge the two halves of this "rise-then-fall" sequence, lo increments 
from start towards the middle and hi decrements from end towards the middle, 
similar to what happens in the QuickSort logic.  When they meet, the loop stops.  The 
following is the resulting merge method, making only two tests on each iteration: 
 
 private void merge (Comparable[] from, Comparable[] into, 
                                 int lo, int hi) 
 { int spot = lo; 
  while (lo < hi) 
   into[spot++] = from[lo].compareTo (from[hi]) > 0 
                ? from[hi--]  :  from[lo++]; 
  into[spot] = from[lo]; 
 } //======================= 
 
Of course, now you have to also write a mergeDown method for merging the same kind 
of "rise-then-fall" sequence in descending order.  And you need two additional methods 
sortDown and sortToSpareDown that call on the mergeDown method, unless you 
add a boolean parameter to each of sort and sortToSpare to select the right 
merging method.  But still, it will execute moderately faster than the simple MergeSort 
algorithm.  This is left as a major programming project. 
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Listing 13.6  The MergeSort Algorithm for a partially-filled array 
 
public class MergeSorter 
{ 
 private Comparable[] itsItem;  // the array to be sorted 
 private Comparable[] itsSpare; // spare to facilitate sorting 
 
 
 public MergeSorter (Comparable[] item, Comparable[] spare) 
 { itsItem = item; 
  itsSpare = spare; 
 } //======================= 
 
 
 public void sort (int start, int end) 
 { if (start < end)                                       //1 
  { int mid = (start + end) / 2;                        //2 
   sortToSpare (start, mid);                           //3 
   sortToSpare (mid + 1, end);                         //4 
   merge(itsSpare, itsItem, start, mid, mid + 1, end); //5 
  }                                                      //6 
 } //======================= 
 
 
 private void sortToSpare (int start, int end) 
 { if (start >= end)                                      //7 
   itsSpare[start] = itsItem[start];                   //8 
  else                                                   //9 
  { int mid = (start + end) / 2;                        //10 
   sort (start, mid);                                  //11 
   sort (mid + 1, end);                                //12 
   merge(itsItem, itsSpare, start, mid, mid + 1, end); //13 
  }                                                      //14 
 } //======================= 
 
 
 private void merge (Comparable[] from, Comparable[] into,  
                     int lo, int mid, int hi, int end) 
 { for (int spot = lo;  spot <= end;  spot++)             //15 
  { if (lo > mid || (hi <= end                          //16 
               && from[lo].compareTo (from[hi]) > 0))  //17 
    into[spot] = from[hi++];                         //18 
   else                                                //19 
    into[spot] = from[lo++];                         //20 
   }                                                      //21 
 } //======================= 
} 

 
 
Another speed-up is for the merge method to see whether the highest value in the 
lower group is less than the lowest value in the upper group and, if so, skip the merging.  
This executes much faster for nearly-sorted lists.  It is also left as a major programming 
project. 
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Non-recursive merge sort 
 
The sequence of actions of the merge sort on a set of 16 data values is as follows.  From 
this description you can probably see how it can be coded non-recursively: 
 
1. Copy values 0 and 1 into the spare array, swapping if needed.  Do the same for 

values 2 and 3, then for values 4 and 5, then for values 6 and 7, then values 8 and 9, 
then values 10 and 11, then values 12 and 13, then values 14 and 15. 

2. Merge values 0 and 1 with values 2 and 3 back into itsItem.  Do the same for 
merging values 4 and 5 with values 6 and 7, then for values 8...11, then for values 
12...15. 

3. Merge values 0...3 with values 4...7 into the spare array; then merge values 8...11 
with values 12...15 into the spare array. 

4. Merge values 0...7 with values 8...15 from the spare array into itsItem. 
 
These 16 values ended up back in the itsItem array as they should.  If you had 
anywhere from 9 to 16 values to sort, you would sort by 2s into the spare array, then 
merge groups of 4 into itsItem (the last group may be smaller), then merge groups of 
8 into the spare array (the last group may be smaller), then all of them back into 
itsItem.  If you had anywhere from 33 to 64 values to sort, two extra passes would 
leave the data values in the itsItem array also. 
 
If you had anywhere from 17 to 32 values to sort, this process would leave you in the 
wrong array.  You can avoid the extra copying pass by making the first pass consist of 
swapping each pair of out-of-order values with each other in the itsItem array.  Then 
the second pass merges groups of 4 into the spare array, etc.  In general, you do this 
swapping-in-place when the number N of values to sort has log2(N) an odd number.  
That is, (int) Math.ceil (Math.log(N) / Math.log(2)) % 2 is 1. 
 
Exercise 13.31  Write out a complete trace of the merge action for Figure 13.7. 
Exercise 13.32 (harder)  Revise Listing 13.6 to omit the sortToSpare method.  
Instead, pass an extra boolean parameter to sort that tells whether the data should 
end up in itsItem or in itsSpare.  Is this an improvement?  Why or why not? 
Exercise 13.33 (harder)  The MergeSort logic works faster if you handle the sorting of 
just one or two values separately and straightforwardly.  Insert coding into Listing 13.6 to 
do this; begin with if (start + 1 >= end), since that condition tells you when there 
are one or two values.   
Exercise 13.34 (harder)  Suppose mergeSort is called for an array of 8 data values.  
What are the values of the indexes start and end on each of the 15 calls of sort 
or sortToSpare?  List them in the order they occur. 
Exercise 13.35*  Rewrite Listing 13.6 to omit the sortToSpare method.  Instead, 
merge from itsItem into itsSpare and then copy all the sorted values back into 
itsItem. 
Exercise 13.36*  Essay:  How much does the modification described in the previous 
exercise slow the execution of the algorithm?  Work it out as a formula. 
Exercise 13.37*  Rewrite the merge method in Listing 13.6 to have the loop execute 
only as long as lo <= mid && hi <= end.  Then clean up whatever is left after that 
loop.  This reduces the number of tests per iteration from four to three. 
Exercise 13.38*  Rewrite Listing 13.6 to have two kinds of MergeSorter objects, one 
merging into itsItem and the other merging into itsSpare. 
Exercise 13.39***  Rewrite the MergeSort logic to work without using recursion, as 
indicated by the discussion at the end of this section. 
Exercise 13.40***  Rewrite the QuickSort logic to work without using recursion. 
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13.6 More On Big-Oh 
 
Question:  How many comparisons does the MergeSort Algorithm make when there are 
N values to sort?  Answer:  First note that the body of the for-loop of merge executes 
exactly once for each value to be sorted.  The MergeSorter object created by the 
mergeSort method gets N values to sort, so the if-condition in its merge method 
executes N times.  The last time, the compareTo method is not evaluated, and 
perhaps some other times as well, so at most N-1 comparisons are made. 
 
The initial call of sort by the mergeSort method includes two "second-level" calls of 
sort , one on each half of the data, so those calls get N/2 values to sort the first time 
and the rest of the N values the second time, so the if-condition in the merge method 
called by those two calls of sort executes N/2 + (N-N/2) times, a total of N 
times.  The last time for each call, the compareTo method is not evaluated, and 
perhaps some other times as well, so at most N-2 comparisons are made.  Similarly, 
the four "third-level" calls of sort with either N/4 or N/4+1 elements to sort evaluate 
the     if-condition N times but make a total of at most N-4 comparisons.   
 
If say there are 32 values to sort altogether, we have calculated a total of 31+30+28 
comparisons so far.  The 8 "fourth-level" calls of sort make at most 3 comparisons 
each and the 16 "fifth-level" calls of sort make at most 1 comparison each.  The total 
is at most 31+30+28+24+16 = 32*5-31 comparisons.  In general, at most 
N*log2(N)-N+1 comparisons are made to get N values sorted in ascending order, 
where log2(N) is the number of times you divide N by 2 to reduce it to 1 or less. 
 
The technical way of saying this is that the big-oh behavior of MergeSort is N*log(N), 
where N is the number of items to be sorted.  It means that the amount of time to do the 
job is roughly proportional to the number of items processed multiplied by the logarithm of 
the number of items processed, for large values of N. 
 
If we define compMS(N) to be the maximum number of comparisons the MergeSort 
requires to sort N values, then compMS(N) can be calculated as N-1 plus the number 
required to sort N/2 values (one half) plus the number required to sort N-N/2 values (the 
other half).  Since no comparisons are required to sort just 1 value, the compMS function 
is defined by the following recurrence equations: 
 
 compMS(N) = (N-1) + compMS(N/2) + compMS(N - N/2)    for N > 1 
 compMS(1) = 0 
 
A concrete example 
 
If a particular processor requires 0.01 seconds to sort 100 items using an InsertionSort, it 
will take about 10,0002 times as long to sort a million items, because 1 million is 10,000 
times as much and the InsertionSort algorithm is big-oh of N2.  That is 1 million seconds, 
which is over 11 days.   
 
Suppose it takes that same processor 0.02 seconds to sort 100 items using MergeSort 
(perhaps the MergeSort is slower for so few items).  Then it will still take only 600 
seconds to sort a million items using the MergeSort, i.e., 10 minutes.  This is calculated 
from 0.02 seconds = M * 100 * log2(100), where the multiplier M depends on the 
processor.  So the time for a million items is M * 1,000,000 * log2(1,000,000) 
which is only 30,000 times as long as 0.02 seconds, to sort 10,000 times as many items.  
Figure 13.8 shows comparative values for N being various powers of 10. 
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N N * log2(N) N-squared 
10 40 100 
100 700 10,000 
1,000 10,000 1 million 
10,000 140,000 100 million 
100,000 1.7 million 10,000 million 
1 million 20 million 1 million million 
 
 Figure 13.8  The relation of N to N*log2(N) and N-squared 
 
 
Clearly the MergeSort executes faster than any elementary sort for very large amounts of 
data.  Does that mean it is more efficient?  Efficiency is not just a matter of execution 
time.  Efficiency depends on three factors -- space, time, and programmer effort.  
The MergeSort takes twice as much space (the itsSpare array) and a lot more 
programmer effort to develop.  So it is better to use an elementary sort unless the amount 
of data is so large as to make the extra space and effort worth the savings in time. 
 
Execution time for QuickSort 
 
The QuickSort algorithm in the best case makes slightly fewer comparisons than the 
MergeSort makes in the worst case, i.e., when the QuickSort's pivot turns out to be right 
in the middle each time.  Specifically, one execution of the QuickSort algorithm for N 
values takes N-1 comparisons to get the pivot in the right spot, then it sorts N/2 
values in one half and  N - N/2 - 1 values in the other half (assuming a perfect 
split).   
 
Since the split operation of the QuickSort on average only moves about half of its values 
around in the array, but the merge operation of the MergeSort moves all of the values 
around in the arrays, the best-case performance of QuickSort is somewhat better than 
the worst-case performance of MergeSort. 
 
Statistical analysis has shown that the average-case performance of QuickSort is 1.386 
times the best-case performance time (that number is twice the natural log of 2, in case 
you are interested in where it came from).  That is 38.6% slower than the best-case time, 
so QuickSort has on average a slightly greater execution time than MergeSort.  However, 
the worst-case performance of QuickSort is big-oh of N2 and somewhat worse than 
InsertionSort.  
 
Fastest sorting algorithms 
 
We next show that any sorting algorithm that uses no information about the values being 
sorted except what the compareTo method supplies must make at least N*Log(N)-
1.5N comparisons to be sure of sorting N different values.  Here we use Log to denote 
logarithms base 2 without rounding up (e.g., Log(3) is about 1.58).   Since we have 
already shown that the MergeSort logic never requires more than N*log2(N)-N+1 
comparisons, it follows that you can hardly do much better than the MergeSort. 
 
To see why this assertion is true, consider that the N different values can be in any of 
N! (N-factorial) different orderings.  Each use of the compareTo method eliminates 
from consideration at most half of the number of possible orderings.  So there will always 
be some cases where you have to make at least Log(N!) calls of compareTo before 
you know which ordering you have. 
 
Once we prove the general (Stirling) formula that N! > NN/21.5N, it will follow that 
 
 Log(N!) > Log(NN/21.5N) = N*Log(N/21.5) = N*Log(N)-1.5N.   
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This general formula is obviously true when N is 1 or 2 (since then the right side of the 
formula is less than 1 but the left side is at least 1).  Once you have verified the general 
formula holds for some particular value of N, you can inductively verify it for N+1 as 
follows:  The left side of the general formula for N+1 obviously becomes N+1 times as 
large as it was for N, but its right side becomes less than N+1 times as large (according 
to the logic in the next paragraph), so the general formula still holds for N+1.  The 
Induction Principle tells us that the general formula will always be true. 
 
How do we know that replacing N by N+1 in the expression NN/21.5N makes the 
expression less than N+1 times as large?  Because the denominator increases by about 
2.82 (twice the square root of 2) and the numerator increases by about 2.72 times N+1.  
Specifically, the NN numerator increases by two factors: ((N+1)/N)N and N+1.  The 
first factor is less than Math.E, since Math.E is defined to be the upper limit of all such 
values.  And Math.E is about 2.72, which is less than 2.82.  Q.E.D. 
 
Stability 
 
The MergeSort has another advantage in that it is a stable sort.  A sort is stable if two 
values that are equal end up in the same relative position that they had in the unsorted 
sequence.  For example, if A.compareTo(B) is zero, and A was initially at index 22 
and B was initially at index 37, then A should be at a lower index than B in the sorted 
array.  This is always true for the MergeSort and the InsertionSort, but it is not always 
true for the QuickSort and the SelectionSort.  So the QuickSort and SelectionSort 
algorithms described in this chapter are not stable sorts.  Of the three sorts described in 
the next section, the ShellSort is not stable but the other two are. 
 
An extended example 
 
The next example illustrates how you can use the insertionSort method and others 
presented in this chapter to sort an array of values using a criterion other than what the 
compareTo method returns.  Say you have a class of objects named Worker, and one 
of the instance methods returns an int value, e.g., someWorker.getBirthYear() is 
the year in which that Worker was born.  You can then sort an array of Workers in order 
of birth year, even if the Worker class does not implement the Comparable interface. 
 
If you have a partially-filled array itsItem that contains itsSize Worker objects, 
then the following statement would sort them in ascending order of birth year and also 
obtain the number of comparisons of pairs of Workers that were made to get them sorted: 
 
 int n = WorkerByBirth.numComps (itsItem, itsSize); 
 
Listing  13.6 (see next page) defines a WorkerByBirth object to have one instance 
variable, a Worker, and one instance method such that x.compareTo(y) < 0 tells 
whether Worker x has a smaller birth year than Worker y has.  This is in the upper 
part of the listing.  Note that you would only have to replace the one return statement in 
the compareTo method to have a class that puts people in ascending order of the 
number of children they have or puts houses in descending order of their selling price or 
puts any kind of object in the order dictated by any int-valued instance method. 
 
The numComps class method takes any partially-filled array of Workers and creates a 
second array containing one WorkerByBirth object corresponding to each Worker object.  
Then it calls the insertionSort method developed earlier in this chapter to sort these 
Comparable objects in increasing order of birth year.  Finally, it extracts the now-
reordered Worker objects back into the original array. 
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Listing 13.7  Sorting a partially-filled array of Workers by birth year 
 
class WorkerByBirth implements Comparable 
{ 
 private static int theNumComps = 0; 
 private Object itsWorker; 
 
 
 public WorkerByBirth (Object given) 
 { itsWorker = given; 
 } //======================= 
 
 
 public int compareTo (Object ob) 
 { theNumComps++; 
  return ((Worker) itsWorker).getBirthYear()  
              - ((Worker) ob).getBirthYear(); 
 } //======================= 
 
 
 public static int numComps (Object[] givenArray, int size) 
 { Comparable[] tempArray = new Comparable [size]; 
  for (int k = 0;  k < size;  k++) 
   tempArray[k] = new WorkerByBirth (given[k]); 
  theNumComps = 0; 
  CompOp.insertionSort (tempArray, size); 
  for (int k = 0;  k < size;  k++) 
   given[k] = tempArray[k].itsWorker; 
  return theNumComps; 
 } //======================= 
} 

 
 
Before calling the insertionSort method, numComps sets a class variable 
theNumComps to zero.  Each call of the compareTo method in the WorkerByBirth 
class increments theNumComps.  So the value of theNumComps returned is the 
number of comparisons of two Workers made during execution of the insertionSort 
method. 
 
Note that you would only have to replace the name insertionSort by quickSort 
to use the QuickSort algorithm for the sorting rather than the InsertionSort algorithm, and 
similarly for other sorting algorithms.  So you can use this coding to count the number of 
comparisons made for any sorting algorithm with just one name-change. 
 
Exercise 13.41  For the processor described in this section (where sorting 100 values 
takes 0.01 second for InsertionSort and 0.02 seconds for MergeSort), how long would it 
take to sort ten million values with each method? 
Exercise 13.42  Give an example to show that the SelectionSort is not stable. 
Exercise 13.43*  Give an example to show that the QuickSort is not stable. 
Exercise 13.44*  Explain why the InsertionSort is stable. 
Exercise 13.45*  Explain why the MergeSort is stable. 
Exercise 13.46*  Revise Listing 13.7 so that it will sort an array of String values in 
descending order of their second characters.  Strings without a second character are 
considered to come before Strings that have second characters. 
Exercise 13.47*  If compQS(N) is the minimum number of comparisons that the 
QuickSort requires to sort N items, it is defined by the following recurrence equations:  
compsQS(N)= (N-1) + compsQS(N/2) + compsQS(N-N/2-1)  for N > 1; compsQS(1)=0. 
Use this information to calculate compsQS(N) for 3, 7, 15, 31, and 63 (all are 2k-1). 
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13.7 Additional Sorting Algorithms: Bucket, Radix, and Shell 
 
There are many other sorting algorithms that computer scientists have invented over the 
years.  One frequently-used algorithm is the heap sort, which is discussed at length in 
Chapter Eighteen.  We briefly describe some other sorting algorithms in this section.  You 
need to review the definition of a queue in Section 7.11 first, or read the first section of 
Chapter Fourteen, because this section uses queues to solve sorting problems. 
 
The bucket sort 
 
Sometimes you have a collection of objects that you want sorted based on age or the 
number of children or some other non-negative integer attribute of the objects.   For 
generality, say that the objects have an instance method getIntValue() that returns 
a non-negative int value.  Then you could keep an array of queues indexed by this int 
value.  That is, itsItem[k] is a queue of all elements for which getIntValue() 
returns k.  Putting each element into the data structure is a big-oh of 1 operation using 
the following statement: 
 
 itsItem[element.getIntValue()].enqueue (element); 
 
After you put all the elements in this data structure, remove them one at a time to get 
them in order of priority.  This is called a bucket sort, since each queue can be thought 
of as a bucket containing data values.  Its execution time is big-oh of N if the range of 
values for getIntValue does not change as N changes and is not too large.  This 
sorting algorithm is a stable algorithm because we use queues rather than just any old 
kind of bucket. 
 
A specific application of this algorithm sorts a large number of data values, each of which 
has an instance variable consisting of a 3-letter word formed with lowercase letters. If you 
want the data values sorted in increasing order of these words, which might be stored in 
an instance variable named itsWord, you could use the following getIntValue 
method to obtain a number in the range from 0 up to 26*26*26 (i.e., 17,576): 
 
 public int getIntValue() 
 { return (itsWord.charAt (0) - 'a') * 26 * 26  
             + (itsWord.charAt (1) - 'a') * 26 
             + (itsWord.charAt (2) - 'a'); 
 } 
 
The radix sort 
 
If the range of values produced by getIntValue is too large (e.g., sorting by social 
security number would need an array with a billion components), use a radix sort 
instead:   
 
1. Put each element into one of ten queues based on the last digit of getIntValue.   
2. Combine the ten queues into one grand list, with the queue for digit '0' first, the queue 

for digit '1' second, etc.  The queue for digit '9' will be at the end. 
3. Repeat steps 1 and 2 for the next-to-last digit, then the third-to-last digit, etc., working 

right-to-left. 
 
When this algorithm finishes, the elements will be sorted in order of getIntValue.  To 
see this, assume that we are using 9-digit numbers (as for social security numbers).  
Because of the last pass through the data, all the elements that begin with '0' will be first 
on the list, followed by those that begin with '1', followed by those that begin with '2', etc.  
All the elements that begin with '0' were on the grand list at the end of the next-to-last 
pass in order of their second digit.  That order did not change during the last pass.  So 
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within the group of elements that begin with '0', all the ones whose second digit is '0' 
come first, then come those whose second digit is '1', etc.   
 
Total execution time is proportional to nine times the number of elements that you are 
sorting, since you make a total of nine passes through the data (one per digit).  This 
assumes that combining the ten queues into one queue is a big-oh of 1 operation, which 
it is if you use NodeQueues with the append method described in Chapter Fourteen.  
This radix sort is a stable sorting method. 
 
Back in the 1960's, there was a massive and expensive machine that sorted punch cards 
according to this radix sort algorithm.  Say the social security number was stored in 
columns 40 through 48 of punch cards.  The operator would stack the cards in an input 
hopper and push the button to indicate column 48.  The machine would read column 48 
of each punch card and drop the card into one of ten stacks depending on the digit in that 
column.  The operator would collect the ten stacks, carefully putting stack '0' on top and 
stack '9' on the bottom.  Then the operator would put the combined stacks in the input 
hopper and push the button to indicate column 47, etc. 
 
An in-place merge sort 
 
The big problem with the merge sort is that it requires a second array for temporary 
storage.  The obvious way to avoid using a second array is as follows, assuming we are 
sorting the values in the index range start to end inclusive: 
 
1. Divide the range in half by computing mid = (start + end) / 2; 
2. Sort item[start]...item[mid] in place. 
2. Sort item[mid+1]...item[end] in place. 
3. Combine the two halves by inserting item[mid+1] where it goes in the first half, 
then inserting item[mid+2] where it goes in the first half, then item[mid+3], etc. 
 
The problem with this algorithm is that the merging part generally has to shift 
approximately N/2 values back down the array to make room for each new value inserted 
(N denotes the total number of items to sort).  Since these large movements of data also 
take place when sorting the two halves, the overall execution time is generally longer 
than for the insertion sort.  So this obvious algorithm is a bust. 
 
However, if you only had to shift a very few data items for each insertion, this would 
actually work pretty fast.  So let us divide the values to be sorted with items indexed 0, 2, 
4, 6, 8, etc. in one half, and items indexed 1, 3, 5, 7, etc. in the other half.  Sort the first 
half (the even-indexed) and sort the second half (the odd-indexed) separately.  Then 
merge the two by doing an insertion sort on the whole.  Since almost all of the data 
values should be very close to where they should be, we typically only move each data 
value 1 or 2 or 3 positions in this final sorting pass.  So it takes time proportional to N.  
Since we make Log2(N) passes through the data, this algorithm seems likely to take not 
much more than N*Log2(N) execution time.  But maybe more -- it depends. 
 
Listing 13.8 (see next page) shows how this algorithm can be implemented non-
recursively.  Say we have 6,000 items to sort.  We first calculate jump as 4096, the 
largest power of two that is less than the given size.  Then sortGroups (item, 
size, 4096) compares each item with the one 4096 below it, swapping them if 
needed to get them in increasing order. 
 
On the next call of sortGroups, jump is 2048, so the values at indexes 0, 2048, 
4096, and 6144 are put in order using an insertion sort logic.  Since the values at indexes 
0 and 4096 are already in order, and so are the values at indexes 2048 and 6144, this 
will take less time than it otherwise would.  Similarly, the values at indexes 1, 2049, 4097, 
and 6145 are put in order using an insertion sort logic, etc. 
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Listing 13.8  An in-place merge sort algorithm for a partially-filled array 
 
 /** Precondition:  size <= item.length; item[0]...item[size-1] 
  *  are non-null values all Comparable to each other. 
  *  Postcondition: The array contains the values it initially 
  *  had but with item[0]...item[size-1] in ascending order. */ 
 
 
 public static void mergeSortBy2s (Comparable[] item, int size) 
 { int jump = 1; 
  while (jump * 2 < size) 
   jump *= 2; 
  for ( ; jump >= 1;  jump /= 2) 
   sortGroups (item, size, jump); 
 } //======================= 
 
 
 private static void sortGroups(Comparable[] item, int size,  
                                                   int jump) 
 { for (int k = jump;  k < size;  k++) 
   insertInOrder (item, k, jump);  // left as an exercise 
 } //======================= 

 
 
This process continues until on the last pass jump is 1, which does in effect an ordinary 
insertion sort.  However, since the odd-indexed data values will already be in order, and 
so will the even-indexed data values, this last pass should take very little time.  The 
coding for the required insertInOrder method is left as an exercise. 
 
The shell sort 
 
For the sorting method in Listing 13.8, it can sometimes happen that most of the odd-
numbered values are rather small and most of the even-numbered values are rather 
large.  So the last pass will still do a great deal of moving of data.  This problem can be 
almost entirely eliminated if we sort of "mix up" the subsequences that we are sorting.   
 
This can be done by using a jump value of one less than a power of 2 (4095 in the 
example) on the first pass.  Then the next pass will divide it by 2, which gives a jump 
value of 2047.  The next time it will be 1023, then 511, then 255, etc. 
 
This sorting algorithm is called the shell sort (named after the person who invented it, 
Donald Shell).  Any sequence of jump values can be used, as long as each is at least 
twice as small as the one before.  The normal sequence of jump values used is 1, 4, 13, 
40, 121, etc., i.e., the sum of the first few powers of 3 (121 is 1 + 3 + 9 + 27 + 81).  Note 
that the jump values described in for the in-place merge sort are sums of the first few 
powers of 2 (1 + 2 + 4 + 8 + 16 + 32 + 64 + 128...).  Note also that neither the shell sort 
nor the in-place merge sort is a stable sorting algorithm. 
 
Exercise 13.48  Revise Listing 13.8 to do a shell sort with jumps of 1, 4, 13, 40, 121, etc. 
Exercise 13.49*  Write the insertInOrder method required for Listing 13.8. 
Exercise 13.50*  Essay:  Explain clearly and in detail why the bucket sort and radix sort 
are both stable sorts. 
Exercise 13.51**  Write public static void bucketSort (Coded[] item, 
int size) to sort the size elements of the item array using the bucket sort logic.  
All values are elements of a class named Coded that defines getIntValue() and 
also defines public final int MAX_VALUE giving the largest value of 
getIntValue(). 
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13.8 About The Arrays Utilities Class (*Sun Library) 
 
The Arrays class in the java.util package has 55 methods that can be useful at 
times.  They are named equals, sort, fill, binarySearch, and asList. 
 
• Arrays.equals(someArray, anotherArray) returns a boolean that tells 

whether the two arrays have the same values in the same order.  There is one such 
method for each of the 8 primitive types (e.g., two arrays of ints) and one for two 
arrays of Objects (using that kind of Object's equals method). 

• Arrays.sort(someArray) sorts in ascending numeric order an array of byte, 
char, double, float, int, short, or long values (thus 7 such methods).  It uses a 
modification of the QuickSort algorithm that maintains N*log(N) performance on many 
sequences of data that would cause the simple QuickSort to degenerate into N2 
performance. 

• Arrays.sort(someArray, startInt, toInt):  the same as the above except 
it only sorts the values at the indexes from startInt up to but not including toInt.  
As usual, it requires 0 <= startInt <= toInt <= someArray.length. 

• Arrays.sort(someArray) sorts in ascending order an array of Comparable 
objects with compareTo.  It uses the MergeSort algorithm, thus it is a stable sort. 

• Arrays.sort(someArray, startInt, toInt):  the same as the above for an 
array of Comparable objects except it only sorts the values at the indexes from 
startInt up to but not including toInt. 

• Arrays.fill(someArray, someValue) assigns someValue to each 
component of the array.  There is one such method for each of the 8 primitive types 
(e.g., an array of longs with a long someValue) and one for Objects. 

• Arrays.fill(someArray, startInt, toInt, someValue):  the same as 
the above except it only assigns components from startInt up to but not including 
toInt.  

• Arrays.binarySearch(someArray, someValue) returns the int index of 
someValue in the array using binary search.  The array should be in ascending 
order.  There is one such method for each of the 7 numeric types (e.g., an array of 
doubles with a double someValue) and one for Objects (using compareTo).  If 
someValue is not found, then the value returned is negative:  -(n+1) where n is the 
index where you would insert someValue to keep all the values in order. 

• Arrays.asList(someArrayOfObjects) returns a List object "backed by" the 
array.  This List cannot be modified in size, and each change to the List is reflected 
immediately in the array itself (set is supported but add and remove are not).  
The List interface is described in Section 15.10. 

• Three additional Arrays methods are analogous to the three Object methods above 
that use compareTo, but they have an additional Comparator parameter. 

 
The Comparator interface in the java.util package specifies two methods that can be 
used for Objects instead of the "natural" compareTo and equals methods: 
 
• someComparator.compare(someObject, anotherObject) returns an int 

value with the same meaning as compareTo, but the comparison is usually based 
on some other criterion than what compareTo uses. 

• someComparator.equals(someObject, anotherObject) returns a boolean 
telling whether the Comparator's compare method returns zero, or both objects are 
null. 
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13.9 Review Of Chapter Thirteen 
 
In general: 
 
Ø For any int variable k, if you use the expression k++ or k-- in a statement, it has the 

value that k had before it was incremented or decremented.  When the variable is 
after the ++ or -- operator, it has the final value after incrementing or decrementing. 
For instance, if k is 4, then item[k++]=2 assigns 2 to item[4] and changes k to 
5, but item[++k]=2 assigns 2 to item[5] and changes k to 5.  If a variable 
appears twice in the same statement, and one appearance has the ++ or -- operator 
on it, the effect is too hard to keep straight, so do not do that. 

Ø The source code for a method X can contain a call of X or a call of a method that 
(eventually) calls X.  This is recursion.  At run time, each execution of a method call 
generates an activation of that method.  During execution of that activation, 
additional method calls generate complete different activations. Recursion means 
that two different activations can be executing the same logic sequence. 

Ø A recursive method cannot loop forever if it has a recursion-control variable, either 
explicitly declared or implicit in the logic.  A recursion-control variable for method X is 
a variable with a cutoff amount which satisfies (a) each call of X from within X 
requires that the recursion-control variable for the current activation is greater than 
the cutoff, (b) each call of X from within X passes a value of the recursion-control 
variable to the new activation that is at least 1 smaller than the existing activation 
has. 

Ø We say that a function T(N) is big-oh of another function f(N) when you can find 
positive constants C and K such that T(N) <= C * f(N) whenever N >= K.  The most 
functions that occur for f(N) are log(N), N, N*log(N), and N2. 

 
About some classic algorithms: 
 
Ø The SelectionSort puts a list of two or more values in order by selecting the 

smallest, putting it first, then applying the SelectionSort process to the rest of the list. 
Ø The InsertionSort puts a list of two or more values in order by applying the 

InsertionSort process to the sublist consisting of all but the last value, then inserting 
that last value in order. 

Ø The BinarySearch algorithm finds a target value in an ordered list of two or more 
values by comparing the target value with the middle value of the list to decide which 
half could contain the target value, then applying the BinarySearch process to find 
the target value in that half of the list. 

Ø The QuickSort puts a list of two or more two or more values in order by choosing 
one element, dividing the list in the two sublists of those larger and those smaller 
than the chosen element, then applying the QuickSort process to each of the two 
sublists.   

Ø The MergeSort puts a list of two or more values in order by dividing it in half, 
applying the MergeSort process to each half, and then merging the two sorted halves 
together in order. 

Ø Average execution time for the InsertionSort and SelectionSort is roughly proportional 
to N2 where N is the number of values to sort.  Sorting algorithms with this property 
are called elementary sorts.   

Ø Average execution time for the BinarySearch algorithm is roughly proportional to 
log2(N).  In this context, log2(N) is the lowest power you put on 2 to get a 
number not smaller than N.  In particular, log2(N) is 6 for any number in the 
range from 33 to 64. 

Ø Average execution time for the MergeSort and QuickSort is roughly proportional to 
N*log2(N).  This describes the big-oh behavior of these algorithms. Figure 13.16 
compares the sorting algorithms for efficiency.  Efficiency depends on three factors:  
space, time, and programmer effort. 
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Ø A sort is stable if, of two values that are equal, the one that came earlier in the 
unsorted list ends up earlier in the sorted list.  For the main algorithms described in 
this chapter, the InsertionSort and MergeSort are stable sorts; the SelectionSort and 
QuickSort are not. 

 
 
 worst-case time average-case time extra space programmer effort 
SelectionSort N-squared N-squared 1 low 
InsertionSort N-squared N-squared  fast 1 low 
QuickSort N-squared N * log(N)   fast 1 medium 
MergeSort N * log(N) N * log(N)   fast N medium 
HeapSort N * log(N) N * log(N) 1 high 
 
Figure 13.16  Efficiency of five sorting algorithms (HeapSort is in Chapter 18) 
 
 
 
Answers to Selected Exercises 
 
13.1  Replace the loop condition k < size - 1 by item[k + 1] != null and replace the loop condition  
  k <= end by item[k] != null. 
13.2  Replace the phrase "< 0" by the phrase "> 0", the word "Min" by the word "Max", and  
  the word "Smallest" by the word "Largest". 
13.5  private static void insertInOrder (Comparable[ ] item, int m) 
  { if (item[m].compareTo (item[m - 1]) < 0) 
   { Comparable save = item[m]; 
    item[m] = item[m - 1]; 
    for (m--;  ...  // all the rest as shown in Listing 13.2 after the for's first semicolon 
   } 
  } 
  This executes faster only because item[m - 1] is moved up before the loop begins,  
  so that the loop has one less iteration than in the original logic.  Otherwise, if you  
  made the comparison of item[m] with item[m - 1] twice, it would usually execute more  
  slowly (the probability is quite low that item[m] is larger than the one before, once  
  m becomes fairly large). 
13.6  Replace the loop condition k < size by item[k] != null. 
13.7  Replace "Comparable" by "double" in three places.  Replace the second for-loop condition by: 
  m > 0 && item[m - 1] > save 
13.8  Insert the following phrase before the call of insertInOrder:  if (item[k] != null) 
  Change the condition in the for-loop to be the following: 
  m > 0 && (item[m - 1] == null || item[m - 1].compareTo (save) > 0) 
13.11 If the range lowerBound...upperBound has an odd number of values, say 13, then upperBound is 
  lowerBound+12, so midPoint is lowerBound + 6, which divides the range into the 6 values above 
  midPoint and the 7 values up through midPoint.  In general, the front half is 1 larger when there 
  are an odd number of values to search (upperBound - lowerBound is an even number). 
13.12 If size is 0, then the body of the loop will not execute, and item[lowerBound] will be item[0].  Then 
  the return statement might throw a NullPointerException or an ArrayIndexOutOfBoundsException. 
13.13 The method is big-oh of N, where N is the number of values in the array. 
13.14 If there are an even number of values to search, at least 4, then rounding the other way would 
  make the lower part 2 larger than the upper part; the imbalance would slow the convergence  
  somewhat.  If however upperBound is lowerBound + 1, thus 2 values to search, then rounding up  
  would make midPoint equal to upperBound.  If target is larger than all values in the array,  
  item[midPoint] is then smaller than target, so lowerBound becomes size, which might  
  throw a NullPointerException or an  ArrayIndexOutOfBoundsException.  If upperBound is  
  lowerBound+1 and item[upperBound] is not smaller than target, you would have an infinite loop. 
13.19 pivot is 7, leaving X, 2, 9, 1, 5, 8, 4.     4<7 moves the 4  to the X, leaving 4, 2, 9, 1, 5, 8, X. 
  2<7 stays where it is.   9>7 moves the 9 to the X, leaving 4, 2, X, 1, 5, 8, 9.   8>7 stays where it is. 
  5<7 moves the 5 to the X, leaving 4, 2, 5, 1, X, 8, 9.   1<7 stays where it is.   7 replaces the X. 
13.20 Replace >= by <= and <= by >= in the two if-conditions that mention compareTo. 
13.21 The first pivot is 4, and the sort leaves {2, 1, 3, 4, 9, 5, 6, 8, 7}.  The next pivot is 2, which leaves 
  {1, 2, 3, 4, 9, 5, 6, 8, 7}.  The next pivot is 9, which leaves  {1, 2, 3, 4, 7, 5, 6, 8, 9}.  That just leaves 
  {7, 5, 6, 8} to sort.  The next pivot is 7, which leaves {1, 2, 3, 4, 6, 5, 7, 8, 9}.  The final pivot is 6. 
13.22 Any value equal to the pivot would be moved from one side to the other of where the pivot goes. 
  This would slow down the execution (due to the extra moves) but not change the outcome except 
  that two objects x, y for which x.compareTo(y)==0 might be in a different order in the outcome. 
13.23 (a) Replace the first two statements by  Comparable pivot = itsItem[hi];  boolean lookHigh = false; 
  (b) Replace the first statement by  int spot = lo + int (Math.random() * (hi + 1 - lo));  
  Comparable pivot = itsItem[spot]; itsItem[spot] = itsItem[lo]; 
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13.24 At the first evaluation of the while-condition lo < hi, lo equals start (since start was passed in as 
  the initial value of the parameter lo), so there are NO values from start through lo-1, so all of them 
  are (vacuously) less than the pivot.  Similarly, hi equals end, so there are no values from hi+1  
  through end, so all of those values are (vacuously) greater than the pivot.  Finally, lookHigh is 
  true and itsItem[lo] is where the pivot came from, so itsItem[lo] is "empty". 
13.31 Initially we have (lo)4, 7, 12, 17, (hi)3, 6, 9, 14.  Since 4 is larger than 3, move 3 to spare, so  
  we now have (lo)4, 7, 12, 17, X, (hi)6, 9, 14.  Since 4 is smaller than 6, move 4  to spare, so 
  we now have X, (lo)7, 12, 17, X, (hi)6, 9, 14.  Since 7 is larger than 6, move 6  to spare, so 
  we now have X, (lo)7, 12, 17, X, X, (hi)9, 14.  Since 7 is smaller than 9, move 7  to spare, so 
  we now have X, X, (lo)12, 17, X, X, (hi)9, 14.  Since 12 is larger than 9, move 9  to spare, so 
  we now have X, X, (lo)12, 17, X, X, X, (hi)14.  Since 12 is smaller than 14, move 12  to spare, so 
  we now have X, X, X, (lo)17, X, X, X, (hi)14.  Since 17 is larger than 14, move 14  to spare, then 17. 
13.32 The sort method is revised as follows, to allow us to discard the sortToSpare method: 
  public void sort (int start, int end, boolean toSpare) 
  { if (start >= end)  
   {  if (toSpare)  
     itsSpare[start] = itsItem[start];  
   }  
   else 
   { int mid = (start + end) / 2; 
    sort (start, mid, ! toSpare); 
    sort (mid + 1, end, ! toSpare); 
    if (toSpare) 
     merge (itsItem, itsSpare, start, mid, mid + 1, end); 
    else 
     merge (itsSpare, itsItem, start, mid, mid + 1, end); 
   } 
  } 
  This is worse. The extra tests make this execute slower, and it seems harder to understand. 
13.33 Replace if(start < end) in the body of the sort method by the following: 
  if (start + 1 >= end)   
  { if (start < end && itsItem[start].compareTo (itsItem[end]) > 0)   
   {  Comparable save = itsItem[start];   
    itsItem[start] = itsItem[end];   
    itsItem[end] = save;  
   } 
  }else 
  Replace the first two lines at the beginning of the sortToSpare method by the following: 
  if (start + 1 >= end)   
  {   if (start >= end) 
    itsSpare[start] = itsItem[start]; 
   else if (itsItem[start].compareTo (itsItem[end]) > 0)   
   { itsSpare[end] = itsItem[start]; 
    itsSpare[start] = itsItem[end]; 
   }  
   else  
   { itsSpare[start] = itsItem[start];  
    itsSpare[end] = itsItem[end]; 
   }  
  }else 
13.34 The calls are (a) sort(0,7), which calls (b) sortToSpare(0,3), which calls sort(0,1), which calls  
  sortToSpare(0,0) and sortToSpare(1,1).  Backing up, (b) calls sort(2,3) which calls sortToSpare(2,2) 
  and sortToSpare(3,3).  Backing up even more, (a) calls (c) sortToSpare(4,7), which calls sort(4,5), 
  which calls sortToSpare(4,4) and sortToSpare(5,5).  Backing up, (c) calls sort(6,7), which calls 
  sortToSpare(6,6) and sortToSpare(7,7).  Those are all of the 15 calls. 
  calls sort(2,2) and sort(3,3).  Then (b) calls (d) sort(4,7), which similarly gives 
13.41 For the InsertionSort, multiply the 11 days by the square of 10, thus 1100 days (about 3 years).   
  For the MergeSort, the time is M * 10million * log2(10million).  The second factor is 
  10 times what it was for a million items, and the third factor is 24/20 times what it 
  was for a million items, so it takes 10*1.2 = 12 times 10 minutes, thus 2 hours. 
13.42 For the sequence 5, 5, 3, 8, the first pass swaps the 3 with the first 5, so those two 5's 
  are not in their original relative position.  Other passes do not change anything. 
13.48 Replace the middle 3 lines of the mergeSortBy2s method by the following lines: 
  while (jump * 3 + 1 < size) 
   jump = jump * 3 + 1; 
  for ( ; jump >= 1;  jump /= 3) 
 


