JavaScript Tutorial

by Dr. William C. Jones, Jr. jonesw@ccsu.edu version of 9/21/03

This primer uses the least HTML possible. The purpose is to introduce the key concepts of JavaScript, namely, commands, variables, functions, and arrays. Each short section gives a web page, lets the student try it out, describes its effect, and explains why the source code causes that effect. Each such web page illustrates only one or two new concepts. The exercises have the students use these concepts to either modify an existing webpage or create a new one.

One class day of discussion and work on developing a simple webpage should suffice before this material is presented. Students should be able to lay out a text editor window and a browser window side-by-side on the screen, so they follow this process: (a) make a few changes in the HTML file in the editor; (b) click SAVE in the text editor; (c) click REFRESH in the browser window; (d) study the effect of the changes just made. They should be able to copy content from another source (e.g., CTRL/C) and paste it into the text editor window (e.g., CTRL/V). The only HTML they need know for this material is <html><body> and </body></html> and
.

Table of Contents

1. Buttons And Alerts

2. Button Values

3. Built-in Variables And Assignment Statements

4. Replacing Images

5. Output Of Text

6. Input Of Text (prompt function)

7. User-defined Functions And The SCRIPT Tag

8. User-defined Variables

9. The Simple Conditional Command

10. The Complex Conditional Command

11. More On Conditionals

12. Arrays

13. Random Numbers And Arrays

14. Animation Using SetTimeout And Arrays

15. Function Parameters

1. Buttons And Alerts

HTML determines how a webpage looks, but HTML is basically static -- there is no action. If you want action, you need to use JavaScript. For example, you can have a button on your webpage that the reader can click to see something. Browse the webpage jones1.html that asks some questions; the user clicks the button next to the question to see the answer. The source code is as follows. Note how the break tag
 puts the items on separate lines.

<html><body> Who was President in 1977?

<input type=button onClick=' alert ("Carter") '>

Who was President in 10 years later?

<input type=button onClick=' alert ("Reagan") '>

</body></html>

HTML tip 1: You can have an HTML tag <input type=button onClick=SomeCommandInQuotes>. This will create a button. When the button is clicked, it carries out the JavaScript command in the quotes given for the onClick attribute (i.e., property) of the button. Normally, we use single-quotes around the JavaScript command, since double-quotes often appear inside the command.

JavaScript tip 1: You can have a JavaScript command alert(SomeMessageInQuotes) . This will cause a small window, called an alert box, to appear, showing the given message. It requires the reader to click OK before the webpage does anything else.

Exercise 1a: Modify the webpage jones1.html to change 1977 to 1987 and also change the two answers to the correct ones.

Exercise 1b: Write a webpage named mine.html that asks 3 questions of your choosing. For each question, have a button that brings up an alert box with the correct answer.

2. Button Values

You may find it more useful to have the question written on the button itself. The reader still clicks the button to see the answer. Browse the following jones2.html webpage.

<html><body> Presidential Quiz

<input type=button value="Who was President in 1977?"

 onClick=' alert ("Carter") '> and

<input type=button value="Who was President in 10 years later?"

 onClick=' alert ("Reagan") '>

Have fun

</body></html>

HTML tip 2: The value attribute of an input tag is value=SomeMessageInQuotes. This gives the phrase that appears on the button (or whatever kind of input object you create -- you will see other kinds later).

Exercise 2a: Modify your mine.html webpage to have your questions appear on the buttons.
3. Built-in Variables And Assignment Statements

The webpage you display has a name in JavaScript -- it is called "document". It is an object that has several attributes, e.g., the color of the background is named by document.bgColor and can be "red", "blue", or any of many other possibilities. The webpage jones3.html has button objects that allow you to change the background color of the webpage document object, to change the color of the text that is printed (the foreground color), and to display the date on which the document was last modified. Browse this webpage. Its source code is as follows.

<html><body> This illustrates the use of the document object

<input type=button value="red bg" onClick=' document.bgColor="red" '>

<input type=button value="pink bg" onClick=' document.bgColor="pink" '>

<input type=button value="from?"
 onClick=' alert (document.lastModified) '>

<input type=button value="blue fg" onClick=' document.fgColor="blue" '>

Click a button to change the way things look

</body></html>

JavaScript tip 3: JavaScript refers to the current webpage as document. Its attributes include: Its background color is document.bgColor, its foreground color is document.fgColor, and the date on which it was last modified is document.lastModified. The capitalization is crucial -- any deviation is bad. The fgColor and bgColor attributes of a document are variable, i.e., you can change their values. To do so, use the JavaScript assignment command variable = NewValue.

Exercise 3a: Modify jones3.html to allow background color changes of gray and purple.

Exercise 3b: Modify your mine.html webpage to allow the reader to change the foreground color to any of green, yellow, or black, and to also allow the reader to change the background color to any of those same three colors. Can you use the buttons to make the text disappear?

4. Replacing Images

You can get a picture into your webpage using the image tag . You can give this img object a name, as follows.

This causes the picture named Ireland.jpg to appear in the webpage at this point. But it also gives a name to the image object -- its name is now pic.

The webpage jones4.html has button objects so you can change the picture that pic displays. Browse this webpage. Its source code is as follows.

<html><body> Here is a picture

<input type=button value="Rome" onClick=' pic.src="Rome.jpg" '>

<input type=button value="Ireland" onClick=' pic.src="Ireland.jpg" '>

<input type=button value="Nevada" onClick=' pic.src="grand_canyon.jpg" '>

 Click a button to change the picture

</body></html>

The image tag specifies two attributes for the pic object: pic.name is "pic" and pic.src is "Ireland.jpg" initially. When you click the button whose value is "Rome", it makes the source of the image be the photograph Rome.jpg instead of Ireland.jpg. Similarly for the other two pictures.

JavaScript tip 4: The src attribute of an image object is variable, i.e., you can change its value. The image has to have a name if you want to be able to change its value. Then you can refer to its source picture as ImageName.src. The src attribute was not variable before IExplorer 4 or Netscape 3.

HTML tip 4: You can use to specify that an image (i.e., picture) appear in a particular place. An image has the name and src attributes.

Exercise 4a: Modify jones4.html by removing the break tags from this webpage and browsing it again. Change the width and height of the display by click-and-drag of the lower-right corner of the browser window. Make sure you understand why the changes occur.

Exercise 4b: Modify jones4.html to add another image tag with the name "pic2". Have 2 buttons for pic2 that switch between the grand canyon and the image fireworks.jpg. Have only 2 buttons for pic that switch between Rome and Ireland.

5. Output Of Text

You may want to print some information in a particular place on the webpage. You can do this if you put a textfield object in that place, give it a name, and then change its value when appropriate. This is often more desirable than to bring up an alert box to display the information. Browse the webpage jones5.html. The source code is as follows.

<html><body> Presidential Quiz #2

<input type=button value="Who was President in 1977?"

 onClick=' answer.value="Carter" '> and

<input type=button value="Who was President in 10 years later?"

 onClick=' answer.value="Reagan" '>

<input type=text name="answer" value="See your answer here">

Have fun

</body></html>

HTML tip 5: You can use <input type=text name=SomeNameInQuotes value=SomeNameInQuotes> to create a rectangular box associated with the textfield object you create. Its name and current value are attributes normally specified inside this tag. If you leave off the value, it defaults to the empty string of characters. You can also name a button, though mostly there is no reason to do so.

JavaScript tip 5: The value attribute of a textfield object or of a button object is variable. The object has to have a name if you want to be able to change its value. Then you can refer to its value as objectName.value.

Exercise 5a: Modify jones5.html to have another button -- clicking it changes the text displayed on the first button to "Who was the Arkansas President?".

Exercise 5b: Modify your mine.html webpage to use a textfield for the output.

6. Input Of Text

You can use a textfield object for input from the reader as well as to display output. A textfield is used on many webpages for the reader to enter credit card info or account and password info. The simplest way is to have the reader enter some text in the textfield and then click a button to react to that text. Browse the jones6.html webpage. The reader has to enter the name of some color in the textfield before clicking one of the two buttons. The source code is as follows.

<html><body> Simple use of a textfield for input

<input type=button value="change background"

onClick=' document.bgColor=choice.value; choice.value="Enter a color" '> and

<input type=button value="change foreground"

onClick=' document.fgColor=choice.value; choice.value="Enter a color" '>

<input type=text name="choice" value="Enter a color">

Have fun

</body></html>

JavaScript tip 6: You may have more than one command on one line of JavaScript, as long as you use a semicolon to separate the commands. You may use the name of a variable on the right side of a JavaScript assignment command.

The two commands for the first button object of this webpage first change the webpage document's background color to whatever the reader typed into the textfield, and next change the value in the textfield to the prompting phrase "Enter a color". Be sure to use a semicolon to separate multiple JavaScript commands.

Another way to get input is to have the textfield itself react to the reader's input. A textfield reacts when the reader types an entry and then tabs away from the box or clicks anywhere else in the webpage. The reaction for a textfield is specified by an onBlur event handler (by contrast, a button has an onClick event handler). For instance, add the following two lines to one of the webpages and browse it to see how an onBlur event changes the background color.

<input type=text name="fix" value="background?"

 onBlur=' document.bgColor=fix.value; fix.value="background?" '>

HTML tip 6: The onBlur attribute of a text kind of input tag is onBlur=SomeCommandInQuotes. When the reader changes its value and then tabs or clicks away from that textfield, it carries out the JavaScript command(s) in the quotes.

A third way to get input is to have a box appear, rather like an alert box, that asks the user for a string of characters to be used. The following in your HTML creates a button that, when you click it, asks for the reader's input (e.g., pink or green) to assign to the background color:

<input type=button value="change background"

 onClick=' document.bgColor=prompt("What color?") '>

JavaScript tip 6b: You can use the JavaScript function prompt(SomeMessageInQuotes, DefaultAnswer). This will cause a small window, called a prompt box, to appear, showing the given message. It ask the reader to type an answer in the answer box and click ENTER; if none is typed, the default answer is used. The answer is returned to the command that calls the prompt function, to be used as needed.

Exercise 6a: Add the two lines involving onBlur shown above to jones6.html.

Exercise 6b: Modify jones4.html to omit the buttons and have a single textfield instead. The reader is to enter one of Rome.jpg, Ireland.jpg, daffodils.jpg, or fireworks.jpg in the textfield and cause the image to change accordingly.

7. User-defined Functions And The SCRIPT Tag

Sometimes you want to add content within your webpage that depends on something you did not know at the time you developed the content. To do this, you can put JavaScript commands among the content, surrounded by the <script>...</script> container tag. That is, you can put JavaScript commands inside either this container tag or inside onClick='...'. For instance, the following line (1) will print the date the document was last modified in the document's content:

(1)
This webpage was modified on

<script> document.write (document.lastModified) </script> .

JavaScript tip 7: You can put JavaScript commands inside the <script>...</script> container tag, to be executed when that part of the webpage is rendered. You can use the JavaScript function document.write(SomeMessageInQuotes) to add content to the webpage at that point.

The alert command is a function call; it calls a function defined by JavaScript (i.e., a built-in function): You give the name of function followed by a number of parameters in parentheses. The alert function has one parameter, the message to be displayed. So does the write function. The prompt function has two parameters in its parentheses, which are separated by a comma. By contrast, document.lastModified is a variable, since it does not have parentheses.

A function that does not have parameters (and thus has empty parentheses()) is a simple function. You can often simplify what you write by defining a simple function. If you have previously defined line (2):

(2)
<script> function lastMod() { document.write (document.lastModified) } </script>

You can then replace line (1) above by the following line (3). You would not bother to do this, however, unless you used that rather long command in several places in your webpage.

(3)
This webpage was modified on <script> lastMod() </script> .

JavaScript tip 7b: A definition of the form function SomeName() { SomeCommands } allows you to use SomeName() later on to do just what those commands would do. It is best to put simple function definitions and most variable definitions (which are introduced in the next section) before the body tag.

Exercise 7a: Modify jones6.html to print out the current foreground color. How does what is printed change when you click the button that changes the foreground color? Why?

Exercise 7b: Add line (1) above to jones5.html and browse it. Then replace it by line (3) and add line (2), then browse it again. Check it against jones7.html to make sure you got it right.

Homework 7c: Modify jones6.html to replace the onClick action of each button by a call of the same simple function. Define the function before <body>.

Homework 7d: Modify your mine.html webpage to have the reader click one of 3 buttons to get a prompt box that asks the question, and have the answer displayed in a single textfield. Define a function for each question/answer combination.

8. User-defined Variables

You have seen built-in variables such as pic.src and answer.value. You can also define your own variables in JavaScript commands when you need them. You would do this because you obtain information in one place that you need to use in another place. Browse the jones8.html webpage to see how it gets the name of the reader after the second line of content is printed and uses that name within the later content. The source code is as follows.

<html> <script> var herName=""

 function you() { document.write(herName) } </script>

<body> illustrating dynamic content

<script> herName = prompt("What is your name?", "dummy") </script>

Hello, <script> you() </script>, nice to see you.

Are you ready to buy something, <script> you() </script>?

How about a T-shirt that says "<script> you() </script>" on it?

</body> </html>

JavaScript tip 8: A command of the form var SomeName = someValue defines a JavaScript variable. This gives the variable SomeName the value you specified, and it means that, in future execution of JavaScript commands, your use of SomeName will be replaced by its current value. "" indicates a string of 0 characters. It can be the initial value of a variable whose real value is obtained later.

Be careful how you name your variables. Letters are always safe. Spaces cannot be used in the name. It is standard to capitalize the first letter of each English word inside the variable name, to make it easier to read. You can also have a digit or an underscore, as in pic2 or her_name, as long as you always start the name with a letter.

The following example shows how you can change the background to a color that the reader chooses, then turn the content to the same color (thereby making it disappear). You need a variable to hold the value returned from the prompt function so you can use it twice.

<script> function change()

 {
var one_color = prompt("What color?", "")

document.bgColor = one_color

document.fgColor = one_color

 } </script>

<input type=button value="change background" onClick=' change() '>

This example illustrates the principle that a variable that is used only within a function is most always defined within the function. It is then called a local variable, as opposed to the global variable herName defined previously. A global variable can be used anywhere.

When a function definition does not fit easily on one line, it is conventional to space it out as shown -- each command on a separate line, and each pair of braces lined up vertically. Spaces around symbols such as = in JavaScript coding also make the definition easier to read.

Exercise 8a: Add another line to jones8.html that says "Is my friend Suzy tired?" except it uses the name that the reader entered for the prompt function.

Exercise 8b: Change herName to your own name (e.g., Lisa or Bart) in the jones8.html webpage and re-browse it. What difference does it make?

9. The Simple Conditional Command

When you want to write a string of characters that is made up of two or more existing strings, you use a plus sign between them to concatenate them (i.e., run them together into one string).

Example: You could have a question for which the reader is to answer yes or no by clicking on one of two buttons. You could use the following two buttons if the correct answer is yes, assuming that herName has been obtained by a prompt as shown in the previous section.

<input type=button value="yes" onClick=' alert(herName + ", you are right!") '>

<input type=button value="no" onClick=' alert("Try again, " + herName) '>

When you want to take a JavaScript action only when a certain condition is true, you can often use the simple if-command. It is illustrated by jones9.html. When the reader changes the value in the textfield to Carter, it is accepted, otherwise it is not. The reader has to be careful to capitalize answers correctly; "carter" is not the same thing as "Carter".

<html><script>

function verify()

{
if (qu.value != "Carter") qu.value = "try again"

if (qu.value == "Carter") qu.value = "right"

}

</script> <body> Presidential Quiz #3

Who was president in 1977? <input type=text name="qu" onBlur=' verify() '>

Write in the correct answer

</body> </html>

JavaScript tip 9: A simple if-command is of the form if (Condition) Command. It executes the given command only when the given condition is true, not when it is false. The == symbol tests for two values being equal, and the != symbol tests for not being equal. You attach two strings of characters together to make one long string by putting a plus sign between them.

Another example of the use of the simple if-command is to make sure the reader did not leave a certain textfield blank. For instance, you could insert the following immediately after the use of the prompt function in jones8.html (the extra semicolon is to separate it from the prompt command).

; if (herName == "") alert ("You did not enter your name!")

Exercise 9a: Modify jones9.html by swapping the order of the two if-commands. Explain why that makes a difference to how the webpage behaves.

Exercise 9b: Make up a question to which the answer is yes. Add it to jones8.html, and paste in the two lines in this section that describe the yes/no buttons.

Exercise 9c: Modify jones9.html to add the analogous question about Eisenhower.

Homework 9d: Modify jones6.html by doing Homework 7c if you have not already, then changing the function so that it does not change document.bgColor unless choice.value is one of "pink", "yellow", or "green". Hint: Have three if-commands before the final resetting of choice.value.

10. The Complex Conditional Command

The two if-commands in the definition of the verify function of the previous section can be replaced by the following and have the same effect. The word "else" here has the same meaning as "otherwise" in ordinary English, i.e., it means "but if that condition is not true, then...".

if (qu.value != "Carter")

{
qu.value = "try again"

} else

{
qu.value = "right"

}

This structure is 5 lines instead of 2, but it executes faster. Moreover, it is less subject to error -- if you swap the original two if-commands, they give the wrong result, but inverting this structure (by beginning with if (qu.value == "Carter")) gives the right result. And with this structure, you can have two or more commands in each alternative.

We want to have an image that switches between Ireland.jpg and Rome.jpg each time a button is pressed. Unfortunately, we cannot use if (pic.src=="Ireland.jpg") pic.src = "Rome.jpg"

because pic.src stores the name of the file is stored with the complete specification, such as "file///C://.../Ireland.jpg". So we will use a separate variable that is 0 if we are to switch to "Ireland.jpg" and is 1 if we are to switch to "Rome.jpg". Browse jones10.html to see this work.

<html> <script>

var whichPic = 0

function swapPicture()

{
if (whichPic == 0)

{
pic.src = "Ireland.jpg"

whichPic = 1

} else

{
pic.src = "Rome.jpg"

whichPic = 0

}

}

</script> <body> This illustrates the use of the if-else-command

<input type=button value="change picture" onClick=' swapPicture() '>

</body></html>

JavaScript tip 10: An if-else-command is of the form if (Condition) { Commands } else { Commands }. It executes the first group of one or more commands when the given condition is true, but it executes the second group of commands when the given condition is false.

Exercise 10a: Modify jones10.html to swap between fireworks.jpg and daffodils.jpg.

Exercise 10b: Write a complex conditional command that gives an alert saying Carter if qu.value is 1977 and gives an alert saying Reagan in all other cases.

Homework 10c: Modify jones10.html to also swap document.fgColor between green and red. Save it under a new name, for use in later exercises.

11. More On Conditionals

This next webpage illustrates the use of additional else if phrases. It plays a game with the reader. Try this jones11.html to see what it does. It would be an interesting game if there were some way to change the secret word each time. A later section shows how to do this.

<html> <script>

var secretWord = "mountain"

function respond()

{
if (secretWord < answer.value)

{
alert("mine is earlier in the dictionary")

} else if (secretWord > answer.value)

{
alert("mine is later in the dictionary")

} else

{
alert("you are exactly right")

answer.value = "Congratulations!"

}

}

</script> <body> GAME: Guess my secret word

<input type=text name="answer" value="" onBlur=' respond() '>

</body></html>

JavaScript tip 11: In an if-else-command, you may insert a number of else if { Commands } phrases before the final else to provide for more alternatives -- it executes only the first group of commands whose condition is true, or only the final group if all conditions are false. You can even not have a final else phrase at all, in which case, if all conditions are false, nothing is executed by the structure. Also, you can use < and > and <= and >= (greater-than-or-equal-to) to compare strings of characters or numbers.

Exercise 11a: Modify jones11.html to make napkin the secret word and to erase the entry in the textfield immediately after telling the reader that his/her guess is wrong.

Exercise 11b (be sure to do this one): Modify jones10.html to swap among four pictures.

Homework 11c: Modify Homework 10c to swap among five colors.

12. Arrays

Presumably for Exercise 11b, where you modified the picture-swapper to go from the first picture to the second to the third to the fourth and then back to the first, you have this:

if (whichPic == 0)...whichPic = 1 ... else if (whichPic == 1)... whichPic = 2

else if (whichPic == 2)...whichPic = 3 ... else ... whichPic = 0

There is an easier way of doing this, which extends quite easily when you add more pictures or have different pictures. You can have a group of variables whose names are bob[0], bob[1], bob[2], and bob[3] (or any other name you choose instead of bob). You can assign "Ireland.jpg" to bob[0], "Rome.jpg" to bob[1], "grand_canyon.jpg" to bob[3], and "fireworks.jpg" to bob[4], all at once, with the following JavaScript command.

var bob = new Array ("Ireland.jpg", "Rome.jpg", "grand_canyon.jpg", "fireworks.jpg")

Then the very long if-else structure you had before can be collapsed to the following:

if (whichPic < 3)

{
pic.src = bob[whichPic]

whichPic ++

} else

{
pic.src = bob[3]

whichPic = 0

}

The last phrase exactly matches what you had in the very long if-else structure (since the bob[3] variable contains the last picture). The first phrase replaces all the others, for 0, 1, and 2. bob[whichPic] is bob[0] or bob[1] or bob[2], depending on the value of whichPic. The ++ sign says that the variable is to be incremented (i.e., increased) by 1. Actually, you can make it even shorter, writing it as simply the following three lines: bob.length is the number of items bob has.

pic.src = bob[whichPic]

whichPic ++

if (whichPic >= bob.length) whichPic = 0

The following jones12.html does a similar thing for the secretWord game. It has a list of five words. Once the reader guesses one word right, it changes the secretWord to be the next one in its list. Study this source code, and play the game, to see how it works.

<html> <script>

var someWord = new Array ("kind", "piper", "gruff", "ratchet", "mope")

var index = 0

function respond()

{
var secretWord = someWord[index]

if (secretWord < answer.value)

{
alert("mine is earlier in the dictionary")

} else if (secretWord > answer.value)

{
alert("mine is later in the dictionary")

} else

{
alert("you are exactly right")

answer.value = "Congrats! Again?"

index ++

if (index >= 5) index = 0

}

}

</script> <body> GAME #2: Guess my secret word

<input type=text name="answer" value="" onBlur=' respond() '>

</body></html>

JavaScript tip 12: A JavaScript command of the form VarName = new Array(SeveralValues) has N values separated by commas. It creates N variables named VarName[0] up through VarName[N-1], initialized in the order the values are listed. Here N is any non-negative number. VarName.length denotes that number N in JavaScript code. ++ increments an integer variable.

Exercise 12a: Modify jonesw12.html to have 10 words.

Exercise 12b: Modify what you did for Exercise 11b to change it as described in this section.

Homework 12c: Modify Homework 11c to use an Array as described in this section.

13. Random Numbers And Arrays

It would be more interesting if the secretWord game would choose one word at random each time the game is played. You will see how to do this now. The JavaScript function Math.random() produces a random number from 0 to 1 (actually, just short of 1, approximately 0.9999999999999999). Paste the following line into some handy html file and click the button several times. What do you see?

<input type=button value="random 0 to 1" onClick=' alert(Math.random()) '>

To choose one of 5 words at random, we need a number from 0 up to (but not including) 5. So we can just multiply Math.random() by 5. Change the preceding button description by making the alert show Math.random() * 5 then see what clicking the button several times causes.

What we need is to have the number rounded down to the next lowest whole number so we can use it as an index. Change the alert to show Math.floor(Math.random() * 5); each time, you will see one of the whole numbers 0, 1, 2, 3, or 4. We use this in the next webpage with 6 instead of 5, because we will have 6 dice. We leave the changes to the secretWord game as an exercise.

To use this new feature in jones12.html, put var index = Math.floor(Math.random() * 5); in place of the definition. Also replace the two lines after Congrats by the same thing, except do not include the word var this time. After all, you are not defining it, you are just changing its value.

The following jones13.html webpage chooses two dice at random and displays them. The alert function call requires parentheses around (firstDie+seconDie) to make sure that numeric addition takes place, before the string concatenation called for by the plus sign before that expression.

<html> <script>

var die = new Array ("die1.jpg", "die2.jpg", "die3.jpg", "die4.jpg", "die5.jpg",

 "die6.jpg")

function rollDice()

{
var firstDie = Math.floor(Math.random() * 6)

var seconDie = Math.floor(Math.random() * 6)

firstPic.src = die[firstDie]

seconPic.src = die[seconDie]

alert ("Your total is " + (firstDie + seconDie))

}

</script> <body> GAME #3: Roll 2 Dice

<input type=button value="click to roll the dice" onClick=' rollDice() '>

</body></html>

JavaScript tip 13: The JavaScript expression Math.floor(Math.random() * 6) gives a whole number 0, 1, 2, 3, 4, or 5, i.e., up to but not including 6. Change 6 to some other whole number N to get numbers 0 to N.

Exercise 13a: When you try out jones12.html, the alert prints the wrong total. Why? Correct it.

Exercise 13b: Modify jones12.html using Math.floor(Math.random() * 5) as described here.

Exercise 13c: Modify what you did for Exercise 12b to change it as described here.

Homework 13d: Modify Homework 12c to select at random from an Array as described here.

14. Animation Using SetTimeout And Arrays

We want to have a button that continually changes the picture being displayed until another button is pushed. This is the heart of the animation concept -- if the pictures are, for instance, different positions of a runner, than changing the picture every 0.1 second can give the appearance that the person is running.

The jones14.html webpage has an image tag and two buttons. When you press the start button, the picture in the image changes once each 1000 milliseconds (which is 1 second). The changing keeps up until you press the stop button, at which point it stops cycling.

<html> <script>

var cycling = false

var whichPic = 0

var pict = new Array ("Ireland.jpg", "daffodils.jpg", "fireworks.jpg",

"grand_canyon.jpg", "Rome.jpg")

function changePicture()

{
pic.src = pict[whichPic]

whichPic ++

if (whichPic >= pict.length) whichPic = 0

if (cycling) setTimeout ("changePicture()", 1000)

}

</script> <body> Click the buttons to start or stop the animation

<input type=button value="start" onClick=' cycling=true; changePicture() '>

<input type=button value="stop" onClick=' cycling=false '>

</body></html>

In particular, when the start button is clicked, the variable cycling is set to true and the changePicture() function is executed. This function (a) changes to a new picture, (b) if cycling is still true at that point, it sets a timeout of 1 second; at the end of that one second, the changePicture() function is executed again.

JavaScript tip 14: The JavaScript command setTimeOut(SomeCommandsInQuotes, aNumber) causes a pause of aNumber milliseconds and then executes the commands in quotes. A variable can be assigned the values of true and false, which means that it can be used as the condition for an if-command.

Exercise 14a: Try clicking the start button twice in a row for jones14.html. Can you explain what happens? Also, replace the 1000 by 333 to see what happens.

Exercise 14b: Modify jones14.html to choose a picture at random each time the picture changes. This is what the slide show feature of Windows 2000 does for the MyPictures folder.

Exercise 14c: Modify jones14.html to cycle among the six dice drawings "die1.jpg" etc.

Exercise 14d: Browse the RollingMan.html webpage. Modify it to have the man rotate twice as fast and in the opposite direction.

Homework 14e: Modify Homework 13d to cycle among seven colors every 0.25 seconds.

Homework 14f: For the RollingMan.html webpage, it took only 10 minutes to make the images in Paint. See if you can do something similar but better.

15. Function Parameters

When you call the prompt function, you can send it "What's your name?" or "How old are you?" or any other question in the first position inside the parentheses, and it will print whatever message you supply. That is because the message is a parameter. This section shows you how you can use parameters in your own user-defined functions.

Section 10 referred to a function with the following code. It is the onBlur action for when the reader enters information in a textfield. It tells whether the answer is right or wrong.

function verify()

{
if (qu.value != "Carter")

{
qu.value = "try again"

} else

{
qu.value = "right"

}

}

If you have a dozen textfields, each with its own question, that would apparently call for a dozen such long methods. They would be all the same structure, only the qu value and the "Carter" value would change from one textfield to the next. And they would be tedious to write.

You can use parameters in such a case. First you write the method in the top part of the following source code for jones15.html. Then you can write three of the question/answer textfields as shown in the body of this webpage.

<html> <script>

function verify(someTextfield, rightAnswer)

{
if (someTextfield.value != rightAnswer)

{
someTextfield.value = "try again"

} else

{
someTextfield.value = "right"

}

}

</script> <body> Enter the right answer in each space

<input type=text name="q1" value="Pres in 1977?" onBlur=' verify(q1, "Carter") ' >

<input type=text name="q2" value="Pres in 1931?" onBlur=' verify(q2, "Hoover") ' >

<input type=text name="q3" value="Pres in 1949?" onBlur=' verify(q3, "Truman") ' >

</body></html>

The onBlur event sends the name of the textfield (q1 or q2 or q3) in to the verify function's someTextfield variable and sends the answer in to the verify function's rightAnswer variable. So the verify function can see the value of the textfield and see what the right answer is, regardless of which of the textfields called the verify function. This is clearly easier than writing the code for a dozen functions.

JavaScript tip 15: When you define a function and list one or more variables in the parentheses of its heading, those variables are initialized to the values in a call of the function. Each different call of the function can assign different values to those variables. These parameter variables are local variables -- they cannot be used outside the function. In general, you should not change the value of a parameter inside the function, because it will have no effect on any outside variable. However, you can change an attribute of a parameter, e.g., pic.src when pic is a parameter, or qu.value when qu is a parameter.

Exercise 15a: Add two more question/answer buttons to jones15.html.

Exercise 15b: Modify jones15.html to have the response be "say something" when the reader leaves the textfield blank.

Exercise 15c: Modify jones11.html to have the respond function have two parameters for secretWord and answer. Rewrite the onBlur action accordingly. Then add two more buttons that call the same method but with different secret words that are specified in the onBlur action.

Exercise 15d: In jones13.html, rewrite the rollDice function to replace firstPic and seconPic by two parameters and still do the same thing. Rewrite the onClick action accordingly.

Homework 15e: After finishing the preceding exercise, add two more images that display two dice (these allow the webpage to be used for a two-person dice game). Add another button that calls the same rollDice method, but with different values passed in to the parameters.

More HTML And Event Handlers

The built-in window.location.href variable contains the URL of the current webpage. Assigning it a new value loads the webpage with that new URL.

The body tag <body>...</body> has two useful event handlers associated with it:

(a) onLoad="whatever" takes the given action when the webpage first loads.

(b) onUnload="whatever" takes the given action when the browser loads another page.

An anchor tag <a >... that specifies an href="whatever" appears in a different color and underlined, otherwise it looks ordinary. It has three useful event handlers associated with it:

(a) onMouseOver="whatever" takes the given action when the reader moves the mouse cursor over the link.

(b) onMouseOut="whatever" takes the given action when the reader moves the mouse cursor off the link.

(c) onClick="whatever" takes the given action when the reader clicks the link. Do not use this with an href other than href="#" (which causes the color change and underlining without linking to anywhere). Otherwise many browsers get confused. The code in the onClick action can change window.location.href if that is what you want.

The command winName=window.open("other.html", "info", "width=300,height=200") opens a new window containing other.html's content; it has the name "info" (in case you want to refer to this window later in a link), and is 300 pixels wide and 200 pixels tall. You can then switch the focus to this other window (bring it to the front) with winName.focus(). Alternatively, you can use e.g. "Rome.jpg" for the first parameter of the window.open command to display that picture.

If you use "" for the first parameter of the window.open command, it starts a new HTML page. You can then write content to this window using winName.document.write(whatever). When you are done writing the content, use winName.document.close() to make the window visible.

Additional JavaScript features:

If you have two conditions in an if-condition (or elsewhere), you can connect them with && to indicate "and", or with "||" to indicate "or". You can also use ! in front of a condition to indicate the opposite of that condition.

// begins a comment that stops at the end of the current line.

/* begins a comment that does not stop until the next */.

someString.charAt(k) gives the kth character of the string, counting from index 0.

someString.substring(c, d) gives the substring from index c up to but not including index d.

someString.toUpperCase() gives the string with lowercase letters replaced by uppercase.

someString.indexOf(someText, k) gives the first number n such that someText is the substring starting from index n. The search for someText begins at index k.

Review Of HTML Tips

HTML tip 1: You can have an HTML tag <input type=button onClick=SomeCommandInQuotes>. This will create a button. When the button is clicked, it carries out the JavaScript command in the quotes given for the onClick attribute (i.e., property) of the button. Normally, we use single-quotes around the JavaScript command, since double-quotes often appear inside the command.

HTML tip 2: The value attribute of an input tag is value=SomeMessageInQuotes. This gives the phrase that appears on the button (or whatever kind of input object you create -- you will see other kinds later).

HTML tip 4: You can use to specify that an image (i.e., picture) appear in a particular place. An image has the name and src attributes.

HTML tip 5: You can use <input type=text name=SomeNameInQuotes value=SomeNameInQuotes> to create a rectangular box associated with the textfield object you create. Its name and current value are attributes normally specified inside this tag. If you leave off the value, it defaults to the empty string of characters. You can also name a button, though mostly there is no reason to do so.

HTML tip 6: The onBlur attribute of a text kind of input tag is onBlur=SomeCommandInQuotes. When the reader changes its value and then tabs or clicks away from that textfield, it carries out the JavaScript command(s) in the quotes.

Review Of JavaScript Tips

JavaScript tip 1: You can have a JavaScript command alert(SomeMessageInQuotes) . This will cause a small window, called an alert box, to appear, showing the given message. It requires the reader to click OK before the webpage does anything else.

JavaScript tip 3: JavaScript refers to the current webpage as document. Its attributes include: Its background color is document.bgColor, its foreground color is document.fgColor, and the date on which it was last modified is document.lastModified. The capitalization is crucial -- any deviation is bad. The fgColor and bgColor attributes of a document are variable, i.e., you can change their values. To do so, use the JavaScript assignment command variable = NewValue.

JavaScript tip 4: The src attribute of an image object is variable, i.e., you can change its value. The image has to have a name if you want to be able to change its value. Then you can refer to its source picture as ImageName.src. The src attribute was not variable before IExplorer 4 or Netscape 3.

JavaScript tip 5: The value attribute of a textfield object or of a button object is variable. The object has to have a name if you want to be able to change its value. Then you can refer to its value as ObjectName.value.

JavaScript tip 6: You may have more than one command on one line of JavaScript, as long as you use a semicolon to separate the commands. You may use the name of a variable on the right side of a JavaScript assignment command.

JavaScript tip 6b: You can use the JavaScript function prompt(SomeMessageInQuotes, DefaultAnswer). This will cause a small window, called a prompt box, to appear, showing the given message. It ask the reader to type an answer and click ENTER; if none is typed, the default answer is used. The answer is returned to the command that calls the prompt function, to be used as needed.

JavaScript tip 7: You can put JavaScript commands inside the <script>...</script> container tag, to be executed when that part of the webpage is rendered. You can use the JavaScript write function, as in document.write(SomeMessageInQuotes), to add content to the webpage at that point.

JavaScript tip 7b: A definition of the form function SomeName() { SomeCommands } allows you to use SomeName() later on to do just what those commands would do. It is best to put simple function definitions and most variable definitions (which are introduced in the next section) before the body tag.

JavaScript tip 8: A command of the form var SomeName = someValue defines a JavaScript variable. This gives the variable SomeName the value you specified, and it means that, in future execution of JavaScript commands, your use of SomeName will be replaced by its current value. "" indicates a string of 0 characters. It can be the initial value of a variable whose real value is obtained later.

JavaScript tip 9: A simple if-command is of the form if (Condition) Command. It executes the given command only when the given condition is true, not when it is false. The == symbol tests for two values being equal, and the != symbol tests for not being equal. You attach two strings of characters together to make one long string by putting a plus sign between them.

JavaScript tip 10: An if-else-command is of the form if (Condition) { Commands } else { Commands }. It executes the first group of one or more commands when the given condition is true, but it executes the second group of commands when the given condition is false.

JavaScript tip 11: In an if-else-command, you may insert a number of else if { Commands } phrases before the final else to provide for more alternatives -- it executes only the first group of commands whose condition is true, or only the final group if all conditions are false. You can even not have a final else phrase at all, in which case, if all conditions are false, nothing is executed by the structure. Also, you can use < and > and <= and >= (greater-than-or-equal-to) to compare strings of characters or numbers.

JavaScript tip 12: A JavaScript command of the form VarName = new Array(SeveralValues) has N values separated by commas. It creates N variables named VarName[0] up through VarName[N-1], initialized in the order the values are listed. Here N is any non-negative number. VarName.length denotes that number N in JavaScript code. ++ increments an integer variable.

JavaScript tip 13: The JavaScript expression Math.floor(Math.random() * 6) gives a whole number 0, 1, 2, 3, 4, or 5, i.e., up to but not including 6. Change 6 to some other whole number N to get numbers 0 to N.

JavaScript tip 14: The JavaScript command setTimeOut(SomeCommandsInQuotes, aNumber) causes a pause of aNumber milliseconds and then executes the commands in quotes. A variable can be assigned the values of true and false, which means that it can be used as the condition for an if-command.

JavaScript tip 15: When you define a function and list one or more variables in the parentheses of its heading, those variables are initialized to the values in a call of the function. Each different call of the function can assign different values to those variables. These parameter variables are local variables -- they cannot be used outside the function. In general, you should not change the value of a parameter inside the function, because it will have no effect on any outside variable. However, you can change an attribute of a parameter, e.g., pic.src when pic is a parameter, or qu.value when qu is a parameter.

Principles Of Development

This primer uses the least HTML possible. The purpose is to introduce the key concepts of JavaScript, namely, commands, variables, functions, and arrays.

1. Students are motivated by concrete examples: Each short section gives a web page, lets the student try it out, describes its effect, and explains why the source code causes that effect. Each such web page illustrates only one or two new concepts. The exercises have the students use these concepts to either modify an existing webpage or create a new one.

2. Students learn JavaScript extremely early: One class day of discussion and work on developing a simple webpage should suffice before this material is presented. Students should be able to lay out a text editor window and a browser window side-by-side on the screen, so they follow this process: (a) make a few changes in the HTML file in the editor; (b) click SAVE in the text editor; (c) click REFRESH in the browser window; (d) study the effect of the changes just made. They should be able to copy content from another source (e.g., CTRL/C) and paste it into the text editor window (e.g., CTRL/V). The only HTML they absolutely have to know for this material is <HTML><BODY> and </BODY></HTML> and
.

3. Students see immediately what the material being learned is useful for: Almost every element of JavaScript introduced is shown being used to do something at least somewhat interesting. Students should be able to recognize a nice purpose to which they could put these elements in their own webpages. Unlike certain other books, we do not start with a list of the reserved words (who starts learning a language by studying the dictionary?) or a description of what characters make up variable names.

4. Students learn the elements of programming:

(a) Built-in variables are introduced (e.g., pic.src) and used long before students have to define their own: Section 3 assigns them constants and uses their values; Sections 4 and 5 introduce more built-in variables; Section 6 assigns one variable to another; Section 8 has user-defined variables (both global and local).

(b) So are built-in functions: Section 1 has the alert function; Section 6 has the prompt function; Section 7 describes 1-liner user-defined functions with no parameters; Section 8 expands this to multi-line user-defined functions with proper indenting.

(c) Statements are introduced gradually: Section 1 uses a single function call; Section 3 uses a single assignment statement; Section 6 uses two statements separated by a semicolon; Section 9 uses a simple if-statement (no else, only one statement in it); Section 10 has if-else statements; Section 11 has the full multi-way selection structure.

(d) Arrays are introduced in Section 12 and expanded on in Sections 13 and 14.

