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Abstract  

Color gamut characterization is an essential step in the ICC 
profile generation for imaging devices. It is also needed as 
part of evaluation and comparison of image quality 
achievable by different imaging systems. A novel technique 
is presented for characterizing the color gamut of an imaging 
device via ray tracing in the CIELAB color space. Initially, 
the convex hull of the set of measurement points is 
computed in the device space. Each of the resulting 
simplices in the convex hull structure has a set of CIELAB 
data triples associated with its vertices. The "local" convex 
hull is computed for each of those sets separately in 
CIELAB. The convex hull triangles are then subjected to a 
ray tracing procedure aimed at approximating the maximum 
achievable chroma for a set of pairs of L and hue angle 
values. For the purpose of the device profile generation, this 
set is derived from the set of grid points in the PCS (profile 
connection space) that have to be mapped to the device 
space. It is shown that the new method characterizes the 
gamut surface and volume better than the conventional 
technique based on computing the "global" convex hull of 
the measurement data points in CIELAB. 

1. Introduction 

A color gamut is a region in a color space, containing colors 
reproducible by a given imaging device or present in a given 
image. Color gamut characterization is an essential part of 
device characterization, a process that determines the rules 
of color reproduction by a given device. In particular, it is 
needed as a step of the ICC profile generation. (For the 
details on device characterization by means of the ICC color 
profiles, we refer the reader to [1].) Color gamut 
characterization is also useful for evaluation and comparison 
of image quality achievable by different imaging systems, 
gamut visualization, and gamut volume calculation. 

For the digital imaging devices that specify the amounts 
of colorants to be combined in a given pixel in terms of 
discrete values (say, integers) from finite ranges, the notions 
of the gamut boundary and gamut volume are merely useful 
abstractions, as the actual gamuts have gaps that are ignored. 
Furthermore, for an analog imaging device with a solid-
volume gamut, an infinite number of color patch 

measurements would be needed in order to reconstruct the 
gamut boundary exactly.  Approaches to approximate 
reconstruction of the gamut boundary are divided into two 
groups [2]: (a) geometric methods, which are based solely 
on a set of point coordinates in a device-independent color 
space, such as CIELAB [3], and (b) colorant space methods, 
which use the device color space information as well.  

The most popular geometric method for color gamut 
characterization is based on computation of a 3D “global” 
convex hull of the in-gamut data points in CIELAB [4]. (The 
convex hull of a set of points is the smallest convex set that 
contains the points.) For the real imaging systems, this 
method tends to overestimate the gamut volume, because the 
realistic color gamuts are non-convex. As the number of 
sufficiently uniformly distributed in-gamut data points 
increases, convergence to the “true” value corresponding to 
our notion of color gamut is not guaranteed. The information 
on implementation of the convex hull algorithms can be 
found in [5]. An attempt to improve the convex hull method 
was made by Balasubramanian and Dalal [6]. For brevity, 
we will call their modification “concave” hull. It involves 
artificial “inflation” of the data set before computing its 
convex hull. As a result, interior points may be incorrectly 
identified as surface points, in which case the gamut volume 
will be underestimated after the appropriate “deflation”. 
Cholewo and Love [2] introduced a more complicated 
geometric method based on the concept of alpha-shapes, 
mathematical generalizations of the convex hull. The 
resulting gamut shape and volume depend on the value of a 
special parameter α that the authors of the method 
recommended to determine experimentally for each given 
imaging system.   The deficiencies of the geometric methods 
are due primarily to their fundamental lack of the device 
space information. Their primary advantage is the ability to 
handle the task for the systems, for which the device space 
data is unavailable. However, this advantage loses its value 
if there is a need to complete the device characterization 
afterwards.  

The colorant space methods assume that each surface 
point in the device-independent color space can be achieved 
by combining the colorants so that at least one of the device 
space coordinates attains its minimum or maximum value. 
This is a reasonable assumption for the printing processes 
that utilize three  or  more colorants.  Indeed,  for  any  given   



 

 

point inside the device space gamut, we are very likely to 
find three colorants such that (a) addition of a sufficiently 
small amount of any of these colorants does not bring us to 
the same point in the device-independent space as 
subtraction of another small amount of that same colorant, 
and (b) the vectors tangential to the corresponding 
trajectories in the device-independent space form a basis in 
it, so there exists a radius so small that any point within this 
radius from the location of the given point in the device-
independent space  can be reproduced  by adjusting the 
amounts of these colorants appropriately.   However, as we 
have already pointed out, an actual imaging device may be 
unable to control the amounts of colorants with arbitrary 
precision, so the given point is not 100% guaranteed to map 
to an interior point in the device-independent space. Braun 
and Fairchild [7] considered the limited case of three 
colorants and stated that, if the gamut data were represented 
as a 3D wire-frame mesh in CIELAB space, some type of 
estimation process would be required to extract a slice 
profile of the gamut surface for a given hue angle 

h = arctan(b/a).      (1) 

(In this paper, the letters ‘L’, ‘a’, and ‘b’ denote the 
CIELAB coordinates also known as L* (lightness), a*, and b* 
[3, 7].) Braun and Fairchild further suggested that this 
estimation process might involve a series of ray tracing steps 
where the gamut intersection points would be located for a 
series of L values for the given hue angle. They did not 
actually implement the ray tracing approach. Instead, they 
preferred to project the data on the Lh plane. They 
subsequently looked up or interpolated values from the 
resulting 2D matrix. In the past, when there were more than 
three colorants involved, the gamuts of the three-colorant 
subprocesses were computed and then their union was taken 
to be the gamut of the process of interest [8]. The problem 
with this approach is that some surface points can only be 
achieved by applying more than three colorants 
simultaneously. 

In the next section of this paper, a new, general colorant 
space method for color gamut characterization via ray 
tracing is presented. Section 3 will describe application of 
the ray tracing method to device profile generation.  

2. Gamut Characterization via Ray Tracing 

Let N be the dimensionality of the imaging device space, 
N≥3. The convex hull of a set of measurement points in this 
space consists of (N-1)-simplices, N vertices per simplex. 
Each of these vertices has a CIELAB data triple associated 
with it. For each (N-1)-simplex, we take the set of data 
triples associated with its vertices and compute the “local” 
convex hull in CIELAB. CIELAB is a 3D color space, so 
the elements of the local convex hull structures are triangles. 
One of these triangles is shown in Figure 1. It is defined by 
three data points in CIELAB: (L1,a1,b1), (L2,a2,b2), and 
(L3,a3,b3). For the purpose of color gamut characterization, 
all such triangles with positive areas will be subjected to a 
ray tracing procedure as follows. 

 

Figure 1. Ray tracing in CIELAB 

First, a set of (L,h)-pairs is chosen so that the value 
ranges of L and h are sampled sufficiently well. For 
example, we may look at all combinations of L=0,1,…,100 
and h=0˚30’,1˚30’,…,359˚30’. For each value of h, the 
values of a and b are computed so that Eq. (1) is true. The 
resulting CIELAB point (L,a,b) for one of the (L,h)-pairs is 
shown in Fig. 1.  

Let the symbol ‘┬’ denote transposition and consider 
three vectors  x1, x2 and x3 defined by the equation 

xi = [Li ai bi] ┬ ,      (2) 

where i=1,2,3. The vector product (cross-product) of the 
vector differences (x3-x2) and (x1-x3), 

n = (x3-x2)×(x1-x3),      (3) 

is the normal to the plane P defined by (L1,a1,b1), (L2,a2,b2), 
and (L3,a3,b3). 

For any point (L0,a0,b0) not coinciding with the point 
(L,a,b), we can find all points of intersection of P and the 
straight line R that connects (L0,a0,b0) and (L,a,b). In order 
to achieve that, we define the vector 

v = [L-L0 a-a0 b-b0] ┬     (4) 

and observe that if the scalar product <n,v> is equal to 0, 
then R is parallel to P. If this is the case and the volume of 
the tetrahedron defined by its vertices (L0,a0,b0), (L1,a1,b1), 
(L2,a2,b2), and (L3,a3,b3) is greater than 0, then the 
intersection  of R and P is empty. If R is parallel to P and the 
volume of the tetrahedron is equal to 0, then we should solve  
a ray tracing subproblem on the plane P, which turned out to 
contain R. Let R’ be the ray emanating from (L0,a0,b0) and 
passing through (L,a,b). We find all points of intersection of 
R’ with the sides of the triangle defined by  (L1,a1,b1), 
(L2,a2,b2), and (L3,a3,b3). If any such points exist, we locate 
among them the closest one to (L0,a0,b0) and the farthest one 



 

 

from (L0,a0,b0). Finally, if R is not parallel to P, then the 
intersection of R and P is a single point (L’,a’,b’), and this 
case is illustrated in Fig. 1. Let’s define 

u = [L1-L0 a1-a0 b1-b0] ┬    (5) 

and compute 
t = <n,u>/<n,v>.      (6) 

Then  
L’ = L0+t(L-L0),      (7) 

a’ = a0+t(a-a0),      (8) 

b’ = b0+t(b-b0).      (9) 

Now let’s check if the intersection point is inside the 
triangle. Let 

  x’ = [L’ a’ b’] ┬,      (10) 

  n12 = (x2-x1)×(x’-x2),     (11) 

  n23 = (x3-x2)×(x’-x3),     (12) 

       n31 = (x1-x3)×(x’-x1).            (13) 

The intersection point (L’,a’,b’) is inside the triangle defined 
by its vertices (L1,a1,b1), (L2,a2,b2), and (L3,a3,b3) if and only 
if <n, n12> ≥ 0, <n, n23> ≥ 0, and <n, n31> ≥ 0. If t ≥ 0, then 
(L’,a’,b’) is also the point of intersection of the triangle and 
the ray R’. 

We set L0=L, a0=0, and b0=0 and observe that  
(L0,a0,b0) is now guaranteed not to coincide with (L,a,b). 
Furthermore, by inspecting the distances between (L0,a0,b0) 
and the intersection points found for the convex hull 
triangles, we can determine the maximum achievable 
chroma for our (L,h)-pair. We will denote this value as 

maxC (L,h) = 2
max

2
max ba + ,    (14) 

where (L,amax,bmax) is the farthest from (L0,a0,b0) point of 
intersection of R’ and a convex hull triangle. Similarly, we 
can compute 

minC (L,h) = 2
min

2
min ba + ,    (15) 

where (L,amin,bmin) is the closest to (L0,a0,b0) point of 
intersection of R’ and a convex hull triangle. 

Whenever at least one intersection point is found for a 
given (L,h)-pair, we add (amax,bmax) to the (initially empty) 
set of points that form the boundary of the color gamut slice 
at L. Moreover, if at least one intersection point is found for 
(L,h), but no intersection points exist for (L,h+180º), then  
(amin,bmin) is also added to the set of the slice boundary 
points. This is needed, because the point (L0,a0,b0) =(L,0,0) 
is not garanteed to be inside the gamut even if L is 
achievable. In particular, the “white” and “black” points of a 
realistic color gamut routinely deviate from the L axis in 

CIELAB. We assume that R’ exits the gamut no more than 
once. 

Figure 2 shows the color gamut slices at L=50 
computed from the measurement data for the SWOP 
standard [9] using three methods: convex hull, “concave” 
hull, and ray tracing.  The CIELAB data is known for 928 
color patches of the standard IT8.7/3 target. 

 
Figure 2. SWOP color gamut slices at L=50 

Let ∆L and ∆h be the distances between the adjacent 
sampling points. In our example, ∆L=1 and ∆h=1º. Let 
C’min(L,h)=Cmin(L,h) if (amin,bmin) is a slice boundary point, 
C’min(L,h)=0 otherwise. Set the value of Cmax(L,h) to 0 
whenever R’ does not intersect any of the convex hull 
triangles. Then the CIELAB volume of the color gamut can 
be approximated by the formula 

     { }� �
�

�
�
�

� −=
°

⋅⋅

hL,

)()( hL,C'hL,C
360

∆hπ∆L
V 2

min
2
max .  (16) 

Precision of this approximation will improve as the 
device space is sampled sufficiently uniformly in more 
locations, ∆L→0, ∆h→0, and the measurement equipment 
gets better. It will then be limited by the device’s own 
variability. Table 1 provides the results of comparison of the 
values of several color gamut characteristics (including the 
CIELAB volumes) computed using three methods: convex 
hull, “concave” hull, and ray tracing. The CIELAB data for 
a set of 1012 coated PANTONE colors came from [10]. As 
you can see from the table, the conventional convex hull 
method overestimates the CIELAB volume of the SWOP 
color gamut by approximately 7%. If the number of (L,h)-
pairs is doubled so that  ∆L=0.5, then the gamut volume 
computed via ray tracing becomes 307,197 (instead of 
307,195). I conducted an additional experiment on an 
electrophotographic imaging device with the gamut size 
considerably larger than that of SWOP. Having measured 
the same print of the 928-patch IT8.7/3 target twice on the 
same   day   with   the   same   GretagMacbeth   SpectroScan  



 

 

Table 1. Comparison of color gamut characteristics 
PANTONE SWOP 

convex hull “concave” 
hull 

ray 
tracing 

CIELAB volumes 
1,082,301 329,304 305,367 307,195 
Percentage of PANTONE colors inside gamut 

100% 31.9% 30.1% 29.5% 

L 

Areas of gamut slices at L=10,20,…,90 
10 1,669 121 119 115 
20 6,260 1,753 1,745 1,613 
30 10,743 4,115 4,046 3,926 
40 15,238 6,260 6,072 6,016 
50 18,494 7,693 7,460 7,443 
60 19,290 6,599 6,054 6,192 
70 17,350 4,441 3,614 3,898 
80 12,990 1,901 1,419 1,465 
90 6,482 0 0 0 

The totals of the gamut slice areas above  
108,514 32,883 30,528 30,669 

 
spectrophotometer unit, I determined that  the measurement-
to-measurement volume difference was between 0.01% and 
0.03% of the smaller of the two volumes involved in its 
computation for the three methods of interest. In the 
meanwhile, the reduction of ∆L from 1 to 0.5 produced the 
volume difference for the ray tracing method within 0.012% 
of the smaller volume. This result suggests that the precision 
of the ray tracing method with respect to the gamut volume 
is comparable to the precision of measurement. The same 
print was immediately measured with another SpectroScan 
unit, and the resulting instrument-to-instrument volume 
differences  turned out to be within 0.18% for the three 
methods. The volume difference between ray tracing and the 
“concave” hull method remained within 0.6%, and the 
convex hull method continued to overestimate the gamut 
volume by approximately 7%.  

3. Application to Device Profile Generation 

For the purpose of the device profile generation, the set of 
(L,h)-pairs for ray tracing is derived from the set of grid 
points in the PCS (profile connection space) that  have to  be  
mapped to the device space. This derivation is likely to 
involve lightness compression  (uniform or non-uniform), as 
most gamut mapping algorithms start with it [11,12]. The 
ray tracing method allows to determine which of the (L,h)-
pairs correspond to the CIELAB points outside the gamut. 
Morovic [11] lists a significant number of color mapping 
studies where clipping is given preference over 
compression. Once a line along which the rest of the 
mapping is to be carried out is determined, ray tracing along 
that line offers a way to implement clipping. Indeed, 
knowing the closest to (L,a,b) intersection point of the line 
of mapping and a convex hull triangle, it is straightforward 
to approximate the device space solution by means of  
interpolation, as the device space coordinates of  the vertices 

of the closest triangle are known. Mapping of the interior 
points for the cases of CMY and CMYK printing can be 
performed as described by Hardeberg and Schmitt [13].   

4. Conclusions 

A new method for color gamut characterization was 
introduced. It characterizes the gamut surface and volume 
more precisely than the conventional technique based on 
computing the convex hull of all measurement data points in 
CIELAB. The new approach involving ray tracing on the set 
of “local” convex hulls is useful for generation of device 
profiles. 
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