
Algorithms and Heuristics

Fall 2007

CS 210: Computing and Culture

Lecture 5, October 1, 2007

Instructor: Dmitri A. Gusev

Linear Search

• Check one list item after another, in a
predetermined order, to find out whether it
is identical (equal) to the item we’re
searching for. If such an item is found,
report its position on the list, otherwise
return a negative value.

Selection Sort
• Repeatedly find the smallest element in the

unsorted part of the list, swap it with the leftmost
element of the unsorted part if needed, and
reduce the unsorted part by 1.

Example:
-1, 4, 5, 6, -7, 0
-7, 4, 5, 6, -1, 0
-7, -1, 5, 6, 4, 0
-7, -1, 0, 6, 4, 5
-7, -1, 0, 4, 6, 5
-7, -1, 0, 4, 5, 6

Bubble Sort
Start on the right-hand side (“at the bottom”) and swap two adjacent

elements if the element on the right is smaller than the one on the left.
Have the “bubble” float to the leftmost position in the unsorted part of the
list, then reduce the unsorted part. If no swaps occurred in a pass, stop.

Example:
-1, 4, 5, 6, -7, 0
-1, 4, 5, -7, 6, 0
-1, 4, -7, 5, 6, 0
-1, -7, 4, 5, 6, 0
-7, -1, 4, 5, 6, 0
-7, -1, 4, 5, 0, 6
-7, -1, 4, 0, 5, 6
-7, -1, 0, 4, 5, 6

Quicksort
if (there is more than one item in the list)
{

Select splitVal;
Split the list so that

(list[0]..list[splitPoint-1] ≤ splitVal) AND
(list[splitPoint]=splitVal) AND
(list[splitPoint+1]..list[listLength-1] > splitVal);

Quicksort list[0]..list[splitPoint-1];
Quicksort list[splitPoint+1]..list[listLength-1];

}

Split
Set left to first+1
Set right to last
Do

Increment left until list[left]>splitVal OR left>right
Decrement right until list[right]<splitVal OR left>right
If (left < right)

Swap list[left] and list[right]
While (left≤right)
Set splitPoint to right
Swap list[first] and list[right]

Quicksort
• Split the list “around” the leftmost element,

then recursively split the sublists.
Example:
-1, 4, 5, 6, -7, 0
-1, -7, 5, 6, 4, 0
-7, -1, 5, 6, 4, 0
-7, -1, 5, 0, 4, 6
-7, -1, 4, 0, 5, 6
-7, -1, 0, 4, 5, 6

Merge Sort

-1 4 5 6 -7 0 2 -2
-1, 4 5, 6 -7, 0 -2, 2
-1, 4, 5, 6 -7, -2, 0, 2
-7, -2, -1, 0, 2, 4, 5, 6

Binary Search
We search in a list that’s already sorted. We
compare the value of the middle element with
the one that we’re searching for. If they are
equal, return true. If the value of the middle
element is larger, we continue our search by
examining the middle element of the half
where the smaller values are located.
Otherwise, check the middle element of the
other half of the list. If the half to examine is an
empty list (no elements left to check), return
false.

Binary Search Trees

Traveling Salesman Problem

• If a salesman starts at point A, and if the
distances between every pair of points are
known, what is the shortest route which
visits all points and returns to point A?

• Heuristic: A “rule of thumb” that tends to
give a good solution. “Greedy algorithms.”

Computational Complexity
Big-O notation expresses computing time (~ the number of

operations) as the term in a function that increases most
rapidly relative to the size of a problem (N). (Can do
average, best case, worst case analysis.)

O(1) is called bounded time. The amount of work is bounded
by a constant.

O(log2N) is called logarithmic time. Example: Binary search.
O(N) is called linear time. Example: Sequential search.
O(N log2N) is called N log2N time. Applying a logarithmic

algorithm N times.
O(N2) is called quadratic time. O(N3) is called cubic time.
Polynomial-time (Class P) algorithms: Algorithms whose

complexity can be expressed as a polynomial in the size of
the problem.

O(2N) is called exponential time.
O(N!) is called factorial time. The traveling salesman problem.

NP and NP-Complete Problems

• Class NP problems: Problems that can be
solved in polynomial time with as many
processors as desired.

• NP-complete problems: A class of
problems within Class NP such that if a
polynomial time solution with one
processor can be found for any member of
the class, such a solution exists for every
member of the class.

	Algorithms and Heuristics
	Linear Search
	Selection Sort
	Bubble Sort
	Quicksort
	Split
	Quicksort
	Merge Sort
	Binary Search
	Binary Search Trees
	Traveling Salesman Problem
	Computational Complexity
	NP and NP-Complete Problems

