Analog and Digital Computers

Instructor: Dmitri A. Gusev

Fall 2007

CS 210: Computing and Culture
Lecture 10, November 7, 2007

Classification and Definitions

- All computers are divided in two broad categories: analog and digital
- In an analog computer, each number is represented by a measurable physical quantity assuming a continuous range of values
- In a digital computer, each number is represented as a sequence of digits that represent values from a finite set

Basic Arithmetic Operations

- Analog computer (the differential analyzer):

1. $(x \pm y) / 2$
2. Integration (the Stieltjes integral)

- Digital computer:

1. Addition $(x+y)$
2. Subtraction $(x-y)$
3. Multiplication ($x^{\star} y$)
4. Division (x / y)

Representation of Digits

- A group of 3 two-valued (binary) markers yields $2^{3}=2^{*} 2^{*} 2=8$ combinations (octal digits). Decimal digits 8 and 9 are not used.
- A group of 4 two-valued (binary) markers yields $\quad 2^{4}=2^{*} 2^{*} 2^{*} 2=16 \quad$ combinations (hexadecimal digits). The extra digits are denoted as A (10), B (11), C (12), D (13), E (14), and F (15).

Basic Components of Digital Computers

- Electromechanical relays
- Vacuum tubes
- Crystal diodes
- Ferromagnetic cores
- Transistors (nowadays, VLSI circuits are made of them, as you may recall)

Addition and Subtraction in Binary

$$
1
$$

\leftarrow carry

10011	\rightarrow	$1+2+16=19$
+11001	\rightarrow	$1+8+16={ }^{+} \underline{\underline{25}}$
101100	\rightarrow	$4+8+32=44$

11 ↔borrow

$$
\begin{array}{r}
10101 \\
-\quad 1011 \\
\hline 1010
\end{array}
$$

$$
\begin{array}{ll}
1+4+16 & =21 \\
1+2+8 & =-\frac{11}{10} \\
2+8 & =1
\end{array}
$$

Multiplication

- More complicated than addition
- accomplished via shifting and addition
- More time and more area
- Let's look at 3 versions based on a gradeschool algorithm

$$
\begin{aligned}
0010 & \text { (multiplicand) } \\
\text { ___1011 } & \text { (multiplier) }
\end{aligned}
$$

- Negative numbers: convert and multiply
- there are better techniques, we won't look at them

Multiplication: Implementation

Datapath

Improved Version

-Multiplier starts in right half of product

Add multiplicand to The left-hand half of Product (need a $65^{\text {th }}$ bit for overflow)

Final Version: Fast Multiplication

Logical Control

- John von Neumann: "Beyond the capability to execute the basic operations singly, a computing machine must be able to perform them according to the sequence..."

Control in Analog Computers

- By cogwheel connections
- By electrical follower-arrangements ("selsyns")
- By electrical "plugged" connections controlled by logical tapes via electromechanical relays

One Organ for Each Basic Operation

- Analog computers must have enough organs for each basic operation
- John von Neumann: "...in digital machines there is uniformly only one organ for each basic operation."
- But then we need memory registers to store the results of these operations!

Control Sequence Points

- This is an (obsolete) form of plugged control for digital computers
- Each control sequence point is connected to:
- One of the basic operation organs
- Memory registers for input and output
- One or more "successor" control sequence points
- "Branching points"

