Data Representation and Problem Solving

Instructor: Dmitri A. Gusev

Fall 2007

CS 113: Introduction to Computers

Lecture 2, September 6, 2007

Bits, Bytes, Words...

- 1 *bit* is a storage unit that must contain either a 0 or a 1.
- 1 byte is a unit consisting of 8 bits.

A word is a group of one or more bytes.

(Pentium 4 is a 32-bit machine, 4 bytes per word.)

Data Representation

Analog (continuous) vs. Digital (discrete)

Signed-Magnitude Representation of Negative Numbers

Add an extra bit on the left to represent the sign.

Use 0 for the '+' sign, 1 for the '-' sign.

Example (3 bits allocated for the magnitude, 1 bit for the sign):

 $0101=5_{10}$, $1101=-5_{10}$.

Problems with the *signed-magnitude* representation:

- Two representations of 0: 0000 and 1000;
- Special logic is required to perform addition, subtraction, multiplication and division.

Ten's Complement Representation of Negative Numbers

- Limit the maximum number of decimal digits by k.
- Interpret the first half of numbers
 (0,1,...,(10^k/2)-1) as natural numbers.
 Interpret the other numbers as

Negative
$$(m) = 10^k - m$$

• Example, k=3: 123+(-455)=123+(1000-455)=668_{10c}=-332₁₀

Two's Complement Representation of Negative Numbers

Representing

Negative
$$(m) = 2^k - m$$
,

where *k* is the number of bits used.

Example: k=8,

Overflow will occur if the result of addition exceeds 127: "128" (10000000) now serves as (-128)!

Representing Real Numbers

Scientific notation:

```
.00508259 = 5.08259*10^{-3} \rightarrow 5.08259E-3
The decimal point is kept to the right of the most significant (non-zero) digit.
```

- Floating point: A real value in Base 10
 r = sign*mantissa*10^{exponent}
 The # of digits is fixed, but the point "floats".
- In other bases, the analog of the decimal point is called a radix point.

Representing Real Numbers in Binary

r = sign*mantissa*2^{exponent}

How to convert the fractional part from decimal to binary? Keep multiplying by the base and reading off the digits. Example:

17.875₁₀ = 10001.111₂ 17/2=8.5, 0.5*2=1; 8/2=4; 4/2=2;2/2=1; .875*2=1.75; 0.75*2=1.5; 0.5*2=1.

Representing Text

- Encoding characters vs. formatting (fonts, margins, tables, color, etc.)
- A character set is a list of characters and the codes used to represent them. How many characters do we need?..
- ASCII (American Standard Code for Information Interchange): Originally allowed 128 unique characters. The eighth bit was a check bit. Latin-1 Extended ASCII character set: 256 characters.

The Unicode Character Set

- 16 bits per character. 2¹⁶=65536 unique characters can be represented.
- The first 256 characters in the Unicode set correspond to those of the extended ASCII character set. ("Backward compatibility".)

Program Development Cycle

- **1. Analyze**: What should the output be? What data/input is necessary to obtain the output?
- 2. Design: Develop an algorithm a logical sequence of precise steps that solve the problem
- 3. Choose the interface: Create command buttons and menus to allow the user to control the program
- **4. Code**: Translate the algorithm into a programming language
- **5. Test and debug**: Locate and remove any errors ("bugs") in the program
- 6. Complete the documentation: For commercial programs, develop an instruction manual and on-line help

Flowchart Symbols

Sample Flowchart: Factorial

Pseudocode

Pseudocode is a compact and informal high-level description of a computer programming algorithm that uses the structural conventions of programming languages, but omits detailed subroutines, variable declarations or language-specific syntax. programming language is augmented with natural language descriptions of the details, where convenient. Pseudocode generally does not actually obey the syntax rules of any particular language; there is no systematic standard form, although any particular writer will generally borrow the appearance of a particular language.