Introduction, Course Overview and Number Systems

Instructor: Dmitri A. Gusev

Fall 2007

CS 113: Introduction to Computers

Lecture 1, September 4, 2007

Components of Computing Systems

- Hardware: Circuit boards, chips, disk drives, peripherals, wires, etc.
- Software: Programs
 (sequences of instructions for the computer to carry out)
- Data (information in its digital form)

Layers of a Computing System

Information Hardware Operating systems Programming: systems **Applications** programming applications Communications programming

Abstraction...

...removes or hides complex details.

The History of Computing

- Textbook, Section 1.5
- http://www.computerhistory.org/exhibits/internet history/

Layers of Software

Number Categories

- Natural numbers: The number 0 and numbers obtained by repeatedly adding 1 to this number. Example: 3=0+1+1+1
- *Negative numbers*: Less than 0. Example: $-\sqrt{2}$
- Integers: Natural numbers and their negatives
- Rational numbers: Fractions, quotients of two integers. Examples: 16/13; 4/1=4
- Irrational numbers: Cannot be represented as quotients of two integers. Example: $\sqrt{2}$

How to represent a natural number?

Base of a number system: The number of digits used in the system. Example 1: Base 10 (decimal)

$$1760_{10} = 0*10^{0} + 6*10^{1} + 7*10^{2} + 1*10^{3}$$

Numbers are written using positional notation.

Example 2: Base 2 (binary)

$$11101_2 = 1*2^0 + 0*2^1 + 1*2^2 + 1*2^3 + 1*2^4 = 29_{10}$$

More Number Systems!

Example 3: Octal (Base 8)

$$73_8 = 3*8^0 + 7*8^1 = 59_{10} = 111011_2$$

Example 4: Hexadecimal (Base 16)

$$AF_{16} = 15*16^{0} + 10*16^{1} = 175_{10} = 257_{8} = 10101111_{2}$$

Extra digits: A=10, B=11, C=12, D=13, E=14, F=15

How to represent a ratio?

259:160=1.61875 241:149~1.61745

A ratio is represented by an angle here.

How to represent an irrational number?

1. Geometrically

$$\sqrt{2}$$

2. By an algorithm: The Fibonacci numbers algorithm is a way to represent the golden ratio

$$\phi = \frac{1 + \sqrt{5}}{2} \approx 1.618034$$

Addition and Subtraction in Binary

1 11
$$\leftarrow$$
 carry 1 \leftarrow carry 10011 \rightarrow 1+2+16 = 19 19 1+8+16 = $\frac{1}{25}$ 101100 \rightarrow 4+8+32 = 44

1 1 \leftarrow borrow 1+4+16 = 21 1 1010 1+2+8 = $\frac{1}{11}$ 2+8 = 10

Power of Two Number Systems

1 digit in Base 8=2³ (octal) corresponds to

3 digits in Base 2 (binary):

$$0_8 = 000_2$$

Example of conversion:

$$1_8 = 001_2$$

 $11001110_2 = (011)(001)(110) = 316_8$

$$2_8 = 010_2$$

 $3_8 = 011_2$

Indeed, 2+4+8+64+128=206₁₀ and

$$4_8 = 100_2$$

 $6+1*8+3*8^2 = 206_{10}$

$$5_8 = 101_2$$

$$6_8 = 110_2$$

$$7_8 = 111_2$$

Power of Two Number Systems (cont'd)

1 digit in Base 16=2⁴ (hexadecimal) corresponds to 4 digits in Base 2 (binary):

 $egin{array}{lll} 0_{16} &= 0000_2 & 8_{16} &= 1000_2 \\ 1_{16} &= 0001_2 & 9_{16} &= 1001_2 \\ 2_{16} &= 0010_2 & A_{16} &= 1010_2 \\ 3_{16} &= 0011_2 & B_{16} &= 1011_2 \\ 4_{16} &= 0100_2 & C_{16} &= 1100_2 \\ 5_{16} &= 0101_2 & D_{16} &= 1110_2 \\ 6_{16} &= 0111_2 & E_{16} &= 1111_2 \\ 7_{16} &= 0111_2 & F_{16} &= 1111_2 \\ \hline \end{array}$

Example of conversion: $11001110_2 = CE_{16}$

Converting from Base 10 to Other Bases

Converting 2849₁₀ to hexadecimal (Base 16): 2849/16=178.0625; 178.0625-178=0.0625; 0.0625*16=1, so 1 is the first digit from the right. 178/16=11.125; 11.125-11=0.125; 0.125*16=2, so 2 is the second digit.

11<16, so B is the third and the last digit.

Indeed, B21₁₆ = 1+2*16+11*16² = 2849₁₀