
Sorting and Searching

Fall 2007

CS 113: Introduction to Computers

Lecture 14, December 4, 2007

Instructor: Dmitri A. Gusev



Sorting

• A sort is an algorithm for ordering an array
Unordered: -4, 3, 5, 0, 9, -1, 10, 2
Ordered:     -4, -1, 0, 2, 3, 5, 9, 10 (increasing order) 
Ordered:     10, 9, 5, 3, 2, 0, -1, -4 (decreasing order)



Selection Sort
• Repeatedly find the smallest element in the

unsorted part of the list, swap it with the leftmost
element of the unsorted part if needed, and
reduce the unsorted part by 1.

Example:
-1, 4, 5, 6, -7, 0
-7, 4, 5, 6, -1, 0
-7, -1, 5, 6, 4, 0
-7, -1, 0, 6, 4, 5
-7, -1, 0, 4, 6, 5
-7, -1, 0, 4, 5, 6



Bubble Sort
Start on the right-hand side (“at the bottom”) and swap two adjacent

elements if the element on the right is smaller than the one on the left.
Have the “bubble” float to the leftmost position in the unsorted part of the
list, then reduce the unsorted part. If no swaps occurred in a pass, stop.

Example: 
-1, 4, 5, 6, -7, 0
-1, 4, 5, -7, 6, 0
-1, 4, -7, 5, 6, 0
-1, -7, 4, 5, 6, 0
-7, -1, 4, 5, 6, 0
-7, -1, 4, 5, 0, 6
-7, -1, 4, 0, 5, 6
-7, -1, 0, 4, 5, 6



Shell Sort

1. Begin with a gap of g = Int (n/2).
2. Compare items 1 and 1+g, 2 and 2+g, …, 

n-g and n. Swap any pairs that are out of 
order.

3. Repeat Step 2 until no swaps are made 
for gap g.

4. Halve the value of g.
5. Repeat Steps 2, 3, and 4 until the value 

of g is 0.



Shell Sort: Example

-1, 4, 5, 6, -7, 0 (g=Int(6/2)=3)
-1, -7, 5, 6, 4, 0
-1, -7, 0, 6, 4, 5 (g=Int(3/2)=1)
-7, -1, 0, 6, 4, 5
-7, -1, 0, 4, 6, 5
-7, -1, 0, 4, 5, 6 (g=Int(1/2)=0, stop)



Split (pseudocode!)
left = first+1 ‘left points to the second element of the list
right = last ‘right points to the last element of the list
Do While left<=right

Increment left until list(left)>splitVal Or left>right
Decrement right until list(right)<splitVal Or left>right
If left < right Then

Swap list(left) And list(right)
End If

Loop
Swap list(first) and list(right)
Split = right ‘to return as a function value



Quicksort
• Split the list “around” the leftmost element, 

then recursively split the sublists. 
Example:
-1, 4, 5, 6, -7, 0
-1, -7, 5, 6, 4, 0
-7, -1, 5, 6, 4, 0
-7, -1, 5, 0, 4, 6
-7, -1, 4, 0, 5, 6
-7, -1, 0, 4, 5, 6 



Merge Sort

-1 4 5 6 -7 0 2 -2
-1, 4   5, 6  -7, 0  -2, 2
-1, 4, 5, 6   -7, -2, 0, 2
-7, -2, -1, 0, 2, 4, 5, 6



Linear Search

• Check one list item after another, in a
predetermined order, to find out whether it
is identical (equal) to the item we’re
searching for. If such an item is found,
report its position on the list, otherwise
return a negative value.



Binary Search
We search in a list that’s already sorted. We 
compare the value of the middle element with 
the one that we’re searching for. If they are 
equal, return True. If the value of the middle 
element is larger, we continue our search by 
examining the middle element of the half 
where the smaller values are located. 
Otherwise, check the middle element of the 
other half of the list. If the half to examine is an 
empty list (no elements left to check), return 
False.  



Binary Search: Flowchart


	Sorting and Searching
	Sorting
	Selection Sort
	Bubble Sort
	Shell Sort
	Shell Sort: Example
	Split (pseudocode!)
	Quicksort
	Merge Sort
	Linear Search
	Binary Search
	Binary Search: Flowchart

