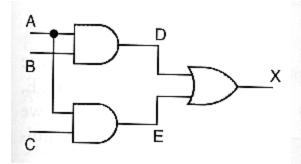
#### Circuits

Instructor: Dmitri A. Gusev

Spring 2007

CSC 120.02: Introduction to Computer Science

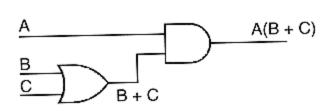

Lecture 8, February 15, 2007

# Combinatorial and Sequential Circuits: Definitions

A combinatorial circuit is a circuit whose output is solely determined by its input values.

A sequential circuit is a circuit whose output is a function of input values **and** the current state of the circuit.

#### **Combinatorial Circuits**




| Α   | В | С | D | E | Х |
|-----|---|---|---|---|---|
| 0   | 0 | 0 | 0 | 0 | 0 |
| 0   | 0 | 1 | 0 | 0 | 0 |
| 0   | 1 | 0 | 0 | 0 | 0 |
| 0   | 1 | 1 | 0 | 0 | 0 |
| 1   | 0 | 0 | 0 | 0 | 0 |
| . 1 | 0 | 1 | 0 | 1 | 1 |
| 1   | 1 | 0 | 1 | 0 | 1 |
| 1   | 1 | 1 | 1 | 1 | 1 |

#### Java expression:

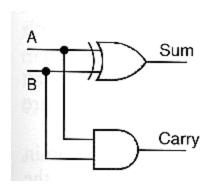
```
boolean A,B,C,X;
X = ((A && B) || (A && C));
```

## Combinatorial Circuits (cont'd)



| Α | В    | С     | B+C | A(B+C) |
|---|------|-------|-----|--------|
| 0 | 0    | 0     | 0   | 0      |
| 0 | 0    | 1     | 1   | 0      |
| 0 | 1    | 0     | 1   | 0      |
| 0 | 1871 | 1     | 1-1 | 0      |
| 1 | 0    | 0     | 0   | 0      |
| 1 | 0    | ालन - | 1 1 | 1      |
| 1 | 1    | 0     | 1   | 1      |
| 1 | 1    | 1     | 1   | 1      |

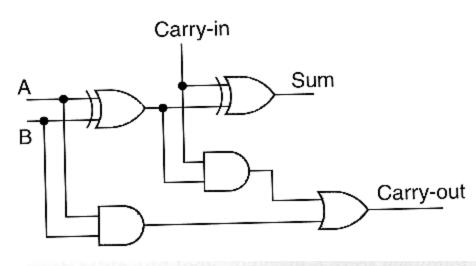
Java expression:


boolean A,B,C,X;

X = A && (B || C);

## Properties of Boolean Algebra

| Property       | AND                                         | OR                        |  |
|----------------|---------------------------------------------|---------------------------|--|
| Commutative    | A·B = B·A                                   | A+B=B+A                   |  |
| Associative    | $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ | (A+B)+C=A+(B+C)           |  |
| Distributive   | $A \cdot (B+C) = (A \cdot B) + (A \cdot C)$ | $A+(B-C)=(A+B)\cdot(A+C)$ |  |
| Identity       | A-1 = A                                     | A+0=A                     |  |
| Complement     | A-(A')=0                                    | A+(A')=1                  |  |
| DeMorgan's law | (A-B)' = (A')+(B')                          | (A+B)'=(A')-(B')          |  |

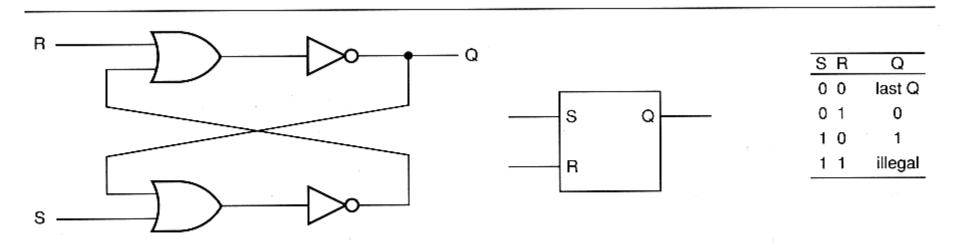

#### Half Adder



| Α | В | Sum | Carry |
|---|---|-----|-------|
| 0 | 0 | 0   | 0     |
| 0 | 1 | 1   | 0     |
| 1 | 0 | 1   | 0     |
| 1 | 1 | 0   | 1     |

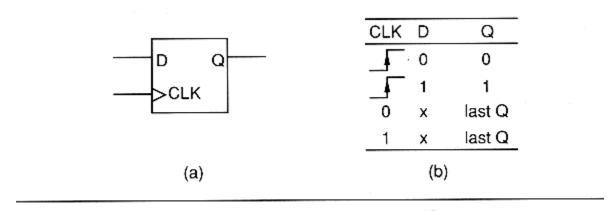
Problem with the Half Adder: No Carry-In

### Full Adder




| Α | В | Carry-<br>in | Sum | Carry-<br>out |
|---|---|--------------|-----|---------------|
| 0 | 0 | 0            | 0   | 0             |
| 0 | 0 | 1            | 1   | 0             |
| 0 | 1 | 0            | 1   | 0             |
| 0 | 1 | 1            | 0   | 1             |
| 1 | 0 | 0            | 1   | 0             |
| 1 | 0 | 1            | 0   | 1             |
| 1 | 1 | 0            | 0   | 1             |
| 1 | 1 | 1            | 1   | 1             |

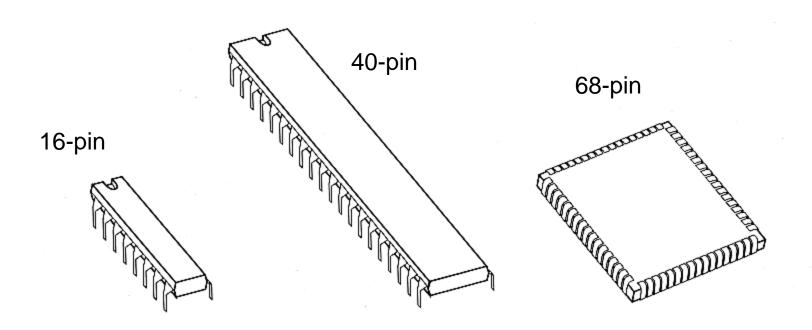
## Multiplexer


A *multiplexer*, or a *mux*, is a circuit that takes several input signals and produces one output signal so that its output is equal to one of the inputs chosen based on the values of a few more special input signals called *select signals*, or *select control lines*.

## Circuits as Memory



A simple S-R flip-flop: (a) circuit; (b) symbol; (c) function table.


# Circuits as Memory (cont'd)



Positive edge-triggered D flip-flop: (a) symbol; (b) function table.

D flip-flops are grouped together into registers to store multi-bit quantities in a computer.

# Integrated Circuits (Chips)



SSI: 1 to 10 gates LSI: 100 to 100,000 gates VLSI: more than 100,000 gates

MSI: 10 to 100 gates

SSI: Small-Scale Integration

MSI: Medium-Scale Integration

LSI: Large-Scale Integration

VLSI: Very-Large-Scale Integration