
Problem Solving and

Top-Down Design

Spring 2007

CSC 120.02: Introduction to Computer Science

Lecture 5, February 6, 2007

Instructor: Dmitri A. Gusev

How to Solve Problems

// Is there a problem?

if (no_problem)

relax;

// Is this really a problem?

else if (imaginary_problem)

relax;

// Is this my problem?

else if (someone_else’s_problem)

relax;

// Is this my first priority problem?

else if (not_first_priority) // Prioritize!!!

try to solve the first priority problem first;

// Pseudocode continues on the next page.

How to Solve Problems (cont’d)

// Is this problem solvable?

// (Is it possible to satisfy the condition?)

else if (definitely_unsolvable)

try to solve the second priority problem;

// Check the data. Garbage In — Garbage Out!!!

else if (bad_data || insufficient_data)

make sure that you have reliable and sufficient data;

How will I recognize a solution?

// Has this problem been solved before?

if (solved_before)

// Is the solution available to you?

if (solution_available)

// Can it be used?

if (solution_can_be_used) // Check it!

How to Solve Problems (cont’d)
if (solution_works) {

time permitting, see if you can find a more efficient

solution;

by the deadline, use the best working solution found;

}

else // i.e., if the existing known solution doesn’t work

if (solution_can_be_fixed_quickly)

fix the solution to make it work;

else

search for a working solution as described below;

else // i.e., if the existing known solution cannot be used

if (solution_can_be_modified && used)

use the modified solution;

How to Solve Problems (cont’d)

else // cannot modify and use

develop an alternative solution;

else // i.e., if the existing solution is unavailable

// Can it be reverse engineered quickly?

if (can_reverse_engineer_quickly && use)

no comments;

// Some problems are reverse engineering problems

else develop an alternative solution;

else // i.e., if the problem is new

if (similar_problem_solved)

// Make The Robustness Assumption

see if your problem can be solved similarly;

else { // i.e., if the problem is original

see if a simple solution presents itself; if (so) check it;

How to Solve Problems (cont’d)

// For every complex problem there is a simple solution that is

// wrong. George Bernard Shaw (1856-1950), Irish playwright

// and critic. For every complex problem, there is a solution

// that is simple, neat, and wrong. H. L. Mencken (1880-1956),

// American writer.

see if the problem can be partitioned into subproblems that

can be solved separately; // Divide and Conquer!

} // end the else clause

Algorithm as a Form of Solution

 Algorithm development

• Analyze the problem

• Propose an algorithm

• Test the algorithm

 Implementation

• Code (translate into a programming language)

• Test correctness of the algorithm and its implementation

 Maintenance

• Use the program

• Modify the program

Top-Down Design

Main module

Level 1

Level 2

Level 3

