Problem Solving and
Top-Down Design

Instructor: Dmitri A. Gusev
Spring 2007
CSC 120.02: Introduction to Computer Science

Lecture 5, February 6, 2007

How to Solve Problems

If (no_problem)
relax;

else if (imaginary_problem)
relax;

else if (someone_else’s problem)
relax;

else if (not_first_priority)
try to solve the first priority problem first;

How to Solve Problems (cont’d)

else if (definitely _unsolvable)
try to solve the second priority problem,;

else if (bad_data || insufficient_data)

make sure that you have reliable and sufficient data;
How will | recognize a solution?
If (solved_before)

If (solution_available)

If (solution_can_be used)

How to Solve Problems (cont’d)

If (solution_works) {

time permitting, see if you can find a more efficient
solution;

by the deadline, use the best working solution found,;
}
else
If (solution_can_be fixed quickly)
fix the solution to make it work;
else
search for a working solution as described below;
else
If (solution_can_be modified && used)
use the modified solution;

How to Solve Problems (cont'd)

else
develop an alternative solution;
else

If (can_reverse_engineer_quickly && use)
no comments;

else develop an alternative solution;
else
If (similar_problem_solved)

see If your problem can be solved similarly;
else {
see If a simple solution presents itself; if (so) check it;

How to Solve Problems (cont'd)

see If the problem can be partitioned into subproblems that
can be solved separately;

}

Algorithm as a Form of Solution

= Algorithm development
« Analyze the problem
* Propose an algorithm
« Test the algorithm

* I[mplementation
« Code (translate into a programming language)
» Test correctness of the algorithm and its implementation

= Maintenance
* Use the program
* Modify the program

Top-Down Design

{ Main module }

