Data Representation and Networking

Instructor: Dmitri A. Gusev

Spring 2007

CSC 120.02: Introduction to Computer Science
Lecture 3, January 30, 2007

Data Representation Topics Covered in Lecture 2 (recap+)

- Bits, Bytes, Words
- Analog (continuous) vs. Digital (discrete); extra term: Pulse-code modulation (PCM)
- Representing Images (pixels, RGB, indexed color / palette); Color depth, HiColor (16-bit), TrueColor (24-bit)
- Representing Sound (digitizing, sampling, quantization, $C D$)
We will discuss image and sound representation some more, after we consider...

Data Compression

Save storage space; speed up transmission.
Bandwidth: Bits (bytes) per second
Compression ratio: $\frac{\text { size_of_the_compressed_data }}{\text { size_of_the_uncompressed_data }}$
Lossless vs. lossy compression
Keyword encoding: Replace a popular word with a shorter code ("with" \rightarrow "w/",
"without" \rightarrow "w/o")
Run-length encoding: AAAAAA \rightarrow A6
Can combine the two.

Huffman Encoding

Why would anyone accept lossy compression?
Audio formats: WAV, MP3...
Video codecs (compressors / decompressors): MPEG-2, MPEG-4, DiVX... Temporal compression and spatial compression
Raster image formats: JPEG, JPEG2000, GIF, PCX, BMP, RAW...
Vector graphics: Images are described in terms of lines and geometric shapes

Signed-Magnitude Representation of Negative Numbers

Add an extra bit on the left to represent the sign.
Use 0 for the ' + ' sign, 1 for the ' - ' sign.
Example (3 bits allocated for the magnitude, 1 bit for the sign):
$0101=5_{10}, 1101=-5_{10}$.
Problems with the signed-magnitude representation:

- Two representations of 0: 0000 and 1000;
- Special logic is required to perform addition, subtraction, multiplication and division.

Ten's Complement Representation of Negative Numbers

- Limit the maximum number of decimal digits by k.
- Interpret the first half of numbers ($0,1, \ldots,\left(10^{\mathrm{k}} / 2\right)-1$) as natural numbers. Interpret the other numbers as

$$
\text { Negative }(m)=10^{k}-m
$$

- Example, $k=3: 123+(-455)=123+(1000-$ $455)=668_{10 c}=-332_{10}$

Two's Complement Representation of Negative Numbers

- Representing

$$
\operatorname{Negative}(m)=2^{k}-m
$$

where k is the number of bits used.
Example: $k=8$,
$-125 \quad 10000011 \quad(256-125=131=1+2+128)$
$+\ldots{ }^{+} \underline{00000011}$
-122 10000110 "134"=Negative(122))
Overflow will occur if the result of addition exceeds 127: "128" (10000000) now serves as (-128)!

Representing Real Numbers

- Scientific notation: $.00508259=5.08259^{*} 10^{-3} \rightarrow 5.08259 \mathrm{E}-3$
The decimal point is kept to the right of the most significant (non-zero) digit.
- Floating point: A real value in Base 10 $r=$ sign*mantissa*10exponent
The \# of digits is fixed, but the point "floats".
- In other bases, the analog of the decimal point is called a radix point.

Representing Real Numbers in Binary

$r=$ sign*mantissa*2exponent
How to convert the fractional part from decimal to binary? Keep multiplying by the base and reading off the digits. Example:
$17.875_{10}=10001.111_{2}$
$17 / 2=8.5,0.5^{*} 2=1 ; 8 / 2=4 ; 4 / 2=2 ; 2 / 2=1$;
$.875^{*} 2=1.75 ; 0.75^{*} 2=1.5 ; 0.5^{*} 2=1$.

Representing Text

- Encoding characters vs. formatting (fonts, margins, tables, color, etc.)
- A character set is a list of characters and the codes used to represent them. How many characters do we need?..
- ASCII (American Standard Code for Information Interchange): Originally allowed 128 unique characters. The eighth bit was a check bit. Latin-1 Extended ASCII character set: 256 characters.

The Unicode Character Set

- 16 bits per character. $2^{16}=65536$ unique characters can be represented.
- The first 256 characters in the Unicode set correspond to those of the extended ASCII character set. ("Backward compatibility".)

Networking

- Connections: cable / wireless
- A node, or host is any device on the network
- Data transfer rate / bandwidth
- A protocol is a set of rules that defines how data is formatted and processed on a network
- The client/server model
- File servers and web servers

Types of Networks

- Local-area network (LAN)
- Ring topology (a LAN configuration)
- Star topology (another LAN configuration)
- Bus topology (yet another LAN configuration): Ethernet (the industry standard)
- A special node on a LAN may serve as a gateway
- Wide-area network (WAN)
- Metropolitan-area network (MAN)
- The Internet

Internet Connections

- The Internet backbone
- An Internet service provider (ISP)

Broadband

- Connection via a cable modem
- A digital subscriber line (DSL)
- A dial-up connection via a phone modem

The word modem stands for modulator/demodulator.

Download / upload

Packet Switching

- Divide a message into packets, send them separately, have them collected and reassembled at their destination.
- Routers direct packets between networks.
- Repeaters strengthen and propagate signals along communication lines.

