Number Systems and Data Representation

Instructor: Dmitri A. Gusev

Spring 2007

CSC 120.02: Introduction to Computer Science
Lecture 2, January 25, 2007

Addition and Subtraction in Binary

\leftarrow carry

10011	\rightarrow	$1+2+16=19$
+11001	\rightarrow	$1+8+16={ }^{+}{ }^{25}$
101100	\rightarrow	$4+8+32={ }^{4}$

11 ↔borrow

$$
\begin{array}{r}
10101 \\
-\quad 1011 \\
\hline 1010
\end{array}
$$

$$
1+4+16=21
$$

$$
\begin{aligned}
1+2+8 & =-\frac{11}{10} \\
2+8 & =10
\end{aligned}
$$

Power of Two Number Systems

1 digit in Base $8=2^{3}$ (octal) corresponds to
3 digits in Base 2 (binary):
$\mathrm{O}_{8}=000_{2}$
$1_{8}=001_{2}$
$2_{8}=010_{2}$
$3_{8}=011_{2}$
$4_{8}=100_{2}$
$5_{8}=101_{2}$
$6_{8}=110_{2}$
$7_{8}=111_{2}$

Example of conversion:
$11001110_{2}=(011)(001)(110)=316_{8}$
Indeed, $2+4+8+64+128=206_{10}$ and $6+1^{\star} 8+3^{\star} 8^{2}=206_{10}$

Power of Two Number Systems (cont'd)

1 digit in Base 16=24 (hexadecimal) corresponds to 4 digits in Base 2 (binary):

$$
\begin{array}{ll}
0_{16}=0000_{2} & 8_{16}=1000_{2} \\
1_{16}=0001_{2} & 9_{16}=1001_{2} \\
2_{16}=0010_{2} & A_{16}=1010_{2} \\
3_{16}=0011_{2} & B_{16}=1011_{2} \\
4_{16}=0100_{2} & \mathrm{C}_{16}=1100_{2} \\
5_{16}=0101_{2} & \mathrm{D}_{16}=1101_{2} \\
6_{16}=0110_{2} & \mathrm{E}_{16}=1110_{2} \\
7_{16}=0111_{2} & \mathrm{~F}_{16}=1111_{2}
\end{array}
$$

Example of conversion:

$$
11001110_{2}=\mathrm{CE}_{16}
$$

Converting from Base 10 to Other Bases

Converting 2849_{10} to hexadecimal (Base 16): 2849/16=178.0625; 178.0625-178=0.0625;
$0.0625^{*} 16=1$, so 1 is the first digit from the right.
178/16=11.125; 11.125-11=0.125;
$0.125^{*} 16=2$, so 2 is the second digit.
$11<16$, so B is the third and the last digit.

Indeed,
$B 21_{16}=1+2^{*} 16+11^{*} 16^{2}=2849_{10}$

Bits, Bytes, Words...

1 bit is a storage unit that must contain either a 0 or a 1.
1 byte is a unit consisting of 8 bits.
A word is a group of one or more bytes.
(Pentium 4 is a 32-bit machine, 4 bytes per word.)

Data Representation

Analog (continuous) vs. Digital (discrete)

