
Limitations of Computing

Spring 2007

CSC 120.02: Introduction to Computer Science

Lecture 18, May 1, 2007

Instructor: Dmitri A. Gusev



Limits on Arithmetic
Significant digits begin with the first nonzero digit on the left 

and end with the last nonzero digit on the right (or a zero digit 

that is exact). Examples:

100 + 110 = 210

1*102 + 1.1*102 = 2*102

123.25 + 46.0 + 86.26 = 255.5 

The numbers are assumed to be measurements (and 

therefore probably inexact), so “1*102” above represents an 

inexact measurement with only one significant digit! 

The maximum number of significant digits (bits) that can be 

represented is called precision. More bits to represent the 

exponent -> wider range (max – min), but lower precision.



Limits on Arithmetic (cont’d)

Spurious accuracy: If a sprinter is measured to have completed a 

100.0 m race in 11.71 seconds, what is his average speed? By 

dividing the distance by the time using a calculator, we get a 

speed of 8.53970965 m/s. Obviously, the speed of the sprinter is 

not known to the nearest 10 nm/s, so it is more sensible to report 

it to four significant figures (8.540 m/s), because the time is only 

measured to four significant figures.

A representational (round-off) error is the difference between the 

calculated approximation of a number and its exact mathematical 

value. It may occur if the precision of the result of an arithmetic 

operation is greater than the precision of our machine.

30.539*42.736 = 1305.114704 ~ 1305.1



Limits on Arithmetic (cont’d) 

Underflow is the condition that occurs when the absolute 

value of the result of a calculation is too small to represent 

in a given machine. A non-zero value is then replaced 

with 0. 

Overflow: The result of a calculation is too large to 

represent in a given machine. 

Cancellation error: A loss of accuracy during addition or 

subtraction of numbers of widely differing sizes, due to 

limits of precision. Example of how it looks like:

(132+0.000000000000021)-131=1



Limits on Communications
Error-detecting codes determine that an error has occurred during the 

transmission of data and alert the system. “Please re-transmit this 
packet.”

Error-correcting codes not only determine that an error has occurred but try 
to determine what the correct value is.

Odd parity bit ensures that the number of 1s in a unit (say, byte) plus parity 
bit is odd. If the number is even when the data is retrieved/received, an 
error has occurred.

Even parity uses the same scheme, but the number of 1 bits must be even.

Check digits (check sums): Store the sum of the individual digits of a number 
with the number.

Reed–Solomon error correction is an error-correcting code that works by 
oversampling a polynomial constructed from the data. The polynomial is 
evaluated at several points, and these values are sent or recorded. By 
sampling the polynomial more often than is necessary, the polynomial is 
over-determined. As long as "many" of the points are received correctly, 
the receiver can recover the original polynomial even in the presence of a 
"few" bad points. Reed–Solomon codes are used in a wide variety of 
commercial applications, most prominently in CDs and DVDs.



Limitations of Software
A software bug is an error, flaw, mistake, failure, or 

fault in a computer program that prevents it from 

behaving as intended (e.g., producing an incorrect 

result). Most bugs arise from mistakes and errors 

made by people in either a program's source code 

or its design, and a few are caused by compilers 

producing incorrect code. 

Complexity: Very many lines of code and/or 

complicated program structure. (Not to be confused 

with computational complexity!)

Software testing can demonstrate the presence of 

bugs but cannot prove their absence.



Computational Complexity
Big-O notation expresses computing time (~ the number of 

operations) as the term in a function that increases most 
rapidly relative to the size of a problem (N). (Can do 
average, best case, worst case analysis.)

O(1) is called bounded time. The amount of work is bounded 
by a constant.

O(log2N) is called logarithmic time. Example: Binary search.

O(N) is called linear time. Example: Sequential search.

O(N log2N) is called N log2N time. Applying a logarithmic 
algorithm N times.

O(N2) is called quadratic time. O(N3) is called cubic time.

Polynomial-time (Class P) algorithms: Algorithms whose 
complexity can be expressed as a polynomial in the size of 
the problem. 

O(2N) is called exponential time. 

O(N!) is called factorial time. The traveling salesman problem.



Turing Machines
Each instruction causes:

• A symbol to be read from 

a cell on the tape

• A symbol to be written into 

the cell

• The tape to be moved one 

cell left, to be moved one 

cell right, or to remain 

positioned as it was

The Church-Turing thesis: Anything that is 

intuitively computable can be computed by a 

Turing machine.



Halting Problem

The halting problem is the problem of 

determining whether any program will 

eventually stop given a particular input. It 

is unsolvable. 



NP and NP-Complete Problems

• Class NP problems: Problems that can be 
solved in polynomial time with as many 
processors as desired.

• NP-complete problems: A class of 
problems within Class NP such that if a 
polynomial time solution with one 
processor can be found for any member of 
the class, such a solution exists for every 
member of the class. 


