Operating Systems

Instructor: Dmitri A. Gusev

Spring 2007

CSC 120.02: Introduction to Computer Science

Lecture 16, April 17, 2007

Functions of an Operating System

The operating system (OS) is the core of the system software. It manages computer resources (memory, input/output devices) and provides an interface for *human-computer interaction (HCI)*.

Computer hardware is wired to initially load a small set of system instructions stored in permanent (*nonvolatile*) memory (ROM). Its popular name, *BIOS*, stands for *Basic Input/Output System*. BIOS *boots* the computer by loading a larger portion of systems software, usually from the hard disk. Nowadays, BIOS usually resides on *EEPROM* (Electrically Erasable Programmable Read-Only Memory) or *flash memory*.

The terms *dual-boot* and *multi-boot* system apply to computers that have two or more operating systems, respectively.

Functions of an Operating System (cont'd)

Multiprogramming is the technique of keeping multiple programs in main memory at the same time.

Memory management means keeping track of what programs are in memory and where in memory they reside.

A program in execution is called a *process*. A process may get interrupted during execution. A *context switch* is the procedure of storing and restoring the state (*context*) of a CPU so that multiple processes can share a single CPU resource.

Process management means keeping track of information for active processes.

CPU scheduling determines which process in memory is executed by the CPU at any given point.

Batch Processing

In a modern operating system, a *batch* is a system in which programs and system resources are coordinated and executed without interaction between the user and the programs.

Time-Sharing

Time-sharing refers to sharing a computing resource among many users by *multitasking*. Multitasking is a method by which multiple tasks, also known as processes, share common processing resources such as a CPU.

In a time-sharing system, each user has a *virtual machine*.

Early time-sharing systems were written for large *mainframes*.

Modern time-sharing systems support connection of multiple users to computers via networks.

Real-Time Systems

A *real-time system* is a system in which response time is crucial given the nature of the application domain.

Response Time

Response time is the time between receiving a stimulus and producing a response.

Memory Management

- A *logical address* is a reference to a stored value relative to the program making the reference.
- A *physical address* is an actual address in the main memory device.
- The mapping of a logical address to a physical address is called *address binding*.

Single Contiguous Memory Management

Operating system

Application program

physical_address = base + logical_address

Partition Memory Management

- *Fixed-partition technique*: Main memory is divided into a specific number of partitions into which programs are loaded
- *Dynamic-partition technique*: Main memory is divided into partitions as needed to accommodate programs
- The base register holds the beginning address of the current partition
- The *bounds register* stores the length of the current partition
- Three general approaches to partition selection:
 - First fit: The first partition big enough to hold the program is allocated to it
 - Best fit: The smallest partition big enough to hold the program is allocated to it
 - Worst fit: The largest partition big enough to hold the program is allocated to it

Paged Memory Management

- Processes are divided into fixed-size pages and stored in memory frames when loaded
- The operating system maintains a separate pagemap table (PMT) for each process in memory
- A logical address is invalid if (a) the page number is out of bounds for the process, and/or (b) the offset is larger than the frame size
- Demand paging: Pages are brought into memory only when referenced (on demand)
- Virtual memory: The illusion that there is no restriction on program size
- *Thrashing*: Inefficient processing caused by constant page swapping

Process Management

- Process states: new [being created], ready [waiting for the CPU only], waiting [for resources other than the CPU], running, terminated.
- Process control block (PCB) is the data structure used by the operating system to manage information about a process

CPU Scheduling

- Non-preemptive scheduling: The currently executing process must give up the CPU voluntarily in order for another process to run
- Preemptive scheduling: The operating system may decide to favor another process, preempting the current process
- Turnaround time: The time elapsed between a process's arrival in the ready state and its termination

Scheduling Approaches

- First-Come, First-Served (FCFS): Nonpreemptive
- Shortest Job Next (SJN): Also nonpreemptive; it's hard to know which job would run for the shortest time!
- Round robin: A time slice given to each process before being preempted is established