
Assembly Language

Spring 2007

CSC 120.02: Introduction to Computer Science

Lecture 10, February 27, 2007

Instructor: Dmitri A. Gusev

Basic Definitions
Assembly language is a low-level programming language

in which a mnemonic letter code represents each of the

machine-language instructions for a particular computer.

Assembly language is a software tool, a symbolic

language that can be directly translated into machine

language by a system program called an assembler.

The output of an assembler is an object module containing

the machine language program and instructions for the

loader on where to load the program in the computer’s

memory.

Basic Definitions (cont’d)
An assembler that runs on one computer and produces object

modules for another is called a cross assembler.

Resident assembly language is the one recognized by the

resident assembler that runs on the manufacturer’s own

development systems.

Assembly language programs are usually line-oriented, so that

each assembly language statement is contained in a single line

with a prescribed format.

Let’s consider a typical assembly language such that each line

has four fields (not to be confused with those of object-oriented

languages, such as Java) arranged as follows:

LABEL OPCODE OPERANDS COMMENTS

Fields of a Typical Assembly

Language: LABEL

The LABEL field is optional. A label is an identifier (or symbol),

i.e., a sequence of letters and digits beginning with a letter.

Most assemblers allow identifiers at least six characters

long.

Every symbol is assigned a value internally. The assembler

keeps track of labels and their values by maintaining a

symbol table. In most cases, the value of a symbol is equal

to the memory address at which the corresponding

instruction or data value is stored. Each symbol may be

defined only once in a program, but it may be referenced as

often as needed.

Fields of a Typical Assembly

Language: OPCODE

The OPCODE field contains the mnemonic of either a

machine instruction or a pseudo-operation or assembler

directive. Mnemonics may have a size suffix (.B for

‘byte’, .W for ‘word’ and the like) to indicate the size of

the operands.

The assembler may use a default size (usually, one word) if

the programmer does not provide a size suffix.

Fields of a Typical Assembly

Language: OPERANDS

The OPERANDS field specifies zero or more operands

separated by commas. An operand is an expression

consisting of symbols, constants, and operators such as

+ and -. The simplest expression consists of a single

symbol or constant.

A decimal constant is denoted by a sequence of digits, and

a hexadecimal constant is denoted by a sequence of

hexadecimal digits preceded by $. Character constants

are surrounded by single quotes (‘A’) and have the

corresponding ASCII values.

Fields of a Typical Assembly

Language: COMMENTS

The COMMENTS field is ignored by the

assembler, but it is essential to good

programming! This field should describe

the algorithms and data structures used in

the program. A line beginning with an

asterisk (*) is a full-line comment.

Pseudo-Operations and the PC

Pseudo-operations (or assembler directives) tell
the assembler how to assemble the program,
and may or may not generate instructions or
data. Examples of pseudo-operations:

• ORG initializes the program counter (PC)

• EQU assigns the value of its operand to its label.
An EQU statement defines an assembly-time
constant.

• DC (Define Constant) defines one or more run-
time constants.

• DS (Define Storage) defines storage for
variables.

Sample Assembly Language Program

* Add the first 16 integers. This is a full-line comment.

ORG $2000 Start at address 2000 hex

START CLR.W SUM Clear SUM

MOVE.W ICNT,D0 Get initial value for CNT (counter)

ALOOP MOVE.W D0,CNT Save the current value of CNT

ADD.W SUM,D0 D0=SUM+D0;

MOVE.W D0,SUM Store the current sum in memory

MOVE.W CNT,D0 Prepare CNT for updating in D0

ADD.W #-1,D0 Decrement D0 by 1

BNE ALOOP Iterate if the counter isn’t zero yet

JMP SYSA Done: Go to operating system

SYSA EQU $8008 Operating system return address

CNT DS.W 1 Reserve one word for CNT

SUM DS.W 1 Reserve one word for SUM

IVAL EQU 16 Initial value is 16

ICNT DC.W IVAL Store initial value, a constant

END START

Addressing Modes
The purpose of addressing modes is to provide an

effective address for an instruction’s operand.

In a direct addressing mode, the effective address is

taken directly from the instruction, or computed by

combining a value in the instruction with a value in

a register.

In an indirect (or deferred) addressing mode, the

address calculation yields the address of a memory

location that contains the ultimate effective

address, called an indirect address.

